Office Waste Paper as Cellulose Nanocrystal Source

A. Orue

A. Santamaria-Echart, A. Eceiza, A. Arbelaiz

"Materials + Technologies" Group, Chemical & Environmental Engineering Dept., Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Pza. Europa 1 20018 Donostia-San Sebastian, Spain.

ander.orue@ehu.eus

Cellulose nanocrystals (CNC) were isolated from office waste paper using an alkali solution treatment and a subsequent acid hydrolysis process with 64 wt% H₂SO₄ at 45 °C for 30 min [1]. The CNC obtained after 2 wt% NaOH treatment and the subsequent acid hydrolysis was labelled as CNC1, while the CNC obtained after 7.5 wt% NaOH treatment was labelled as CNC2. Figure 1 shows the X-ray diffractograms of office waste paper and CNCs. All diffractograms showed peaks related to cellulose I [1,2]. Nevertheless, CNC2 sample showed peaks related to cellulose II [1,3] suggesting the partial conversion of cellulose I into cellulose II. Moreover, diffractograms of office waste paper showed peaks related to calcite [1,4] whereas in the diffractograms of CNCs, these peaks were not observed corroborating the removal of calcite. Figure 2 shows the micrographs obtained by atomic force microscopy (AFM). AFM micrographs confirmed the presence of cellulose nanocrystals and it was observed that the diameter of CNC samples was around 5-6 nm and the length of isolated CNC samples varied with the applied alkali treatment.

Acknowledgments

Authors are grateful for the financial support from the Basque Country Government in the frame of Consolidated Groups (IT-776-13) project. Authors also thank for technical and human support provided by SGIker of UPV/EHU and European Funding (ERDF and ESF).

References

- A Orue, A Santamaria-Echart, A Eceiza, C Peña-Rodriguez, A Arbelaiz, J. Appl. Polym. Sci., 34 (2017) 45257.
- [2] MA Mohamed, WNW Salleh, J. Jaafar, SEAM Asri, AF Ismail, RSC Adv., 5 (2015) 29842.
- [3] P Dhar, D Tarafder, A Kumar, V Katiyar, RSC Adv. 5 (2015) 60426.
- [4] A Rahman, R Shinjo, J Halfar, Adv. Mater. Phys. Chem., 3 (2013) 120.

Figures

Figure 2: AFM of CNC samples obtained after different chemical treatment conditions: (a) CNC1 and (b) CNC2.