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Abstract
The ability to tailor the local charge environment of materials at nanometer length scales is essential for the next generation of two-dimensional (2D) 
electronic and plasmonic devices. The large work function of ⍺-RuCl3 (6.1 eV) makes it an ideal 2D electron acceptor for a wide range of 2D materials, 
such as graphene. In our study, we use a multipronged approach employing both scanning tunneling microscopy (STM) and spectroscopy (STS) and 
scattering-type scanning near-field optical microscopy (s-SNOM) to interrogate both the electronic and plasmonic properties of graphene/⍺-RuCl3
heterostructures. Using intrinsic nanobubbles present at graphene/⍺-RuCl3 interfaces as a testbed for this interlayer charging process, we demonstrate 
that a massive shift in the Dirac point energy of graphene takes place over a lateral length scale of only 3 nm. The resulting conductivity environment in 
graphene gives rise to novel plasmonic behavior, including point-scattered surface plasmons and edge plasmons.

Nanobubble p–n Junctions in Graphene/⍺-RuCl3

A shift in the Dirac point energy of 0.6 eV occurs over 3 nm between 
charge-transfer doped graphene/⍺-RuCl3 and intrinsically n-doped 
graphene suspended in nanobubbles. The resulting nanoscale p–n 
junction acts as a hard barrier for plasmonic reflections. [1]

Nano-Optical Imaging of Graphene/⍺-RuCl3

(A) s-SNOM image of graphene/⍺-RuCl3 showing three types of 
plasmonic oscillations. (B) The experimental plasmon dispersion 
matches the theoretical model of 0.6 eV doped graphene. [2]
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STM/STS on Graphene/⍺-RuCl3 Nanobubbles 
(A) Point spectra and 
(B) dI/dV maps of a 
characteristic 
graphene nanobubble 
showing a 0.6 eV shift 
in the Dirac point 
energy on the 
graphene nanobubble 
compared to the 
surrounding 
graphene/⍺-RuCl3
interface. (C) A dI/dV
linecut taken along 
the white trajectory 
shown in the inset in 
(A). A depletion region 
of 3 nm is observed, 
with the shift in EDirac
(solid white line) 
occurring much more 
abruptly than the 
underlying 
topographic cross-
section (dashed white 
line). [1]

Comparison to DFT Calculations

The dependence of EDirac on layer separation Δh for experimental data 
(red dots) mirrors theoretical data (blue dots and green curve). [1]

Daniel J. Rizzo
djr2181@columbia.edu


