International Conference ONLINE

* April06-07.2022 *

Raman-based Quantitative Point Defect Density Comparison in Graphenic System

Kazunori Fujisawa, Cheon-Soo Kang,
Takuya Hayashi, Mauricio Terrones
Shinshu University, 4-17-1 Wakasato, Nagano-city, Japan
Penn State University, University Park, Pennsylvania 16802, United States

Although exhaustive efforts have been devoted to understanding the correlation between Raman feature and defect density and layer count [1], a unified solution for the defect density evaluation in graphenic materials has not yet been proposed. In this study, following the previous report [2], the substitutional boron atoms were introduced into bulk graphite flake using thermal diffusion of a boron atom. After doping process, mechanical exfoliation was performed to obtain mono-to-few-layered graphenic materials. Detailed Raman spectroscopic analysis and collected more than 10k spectra revealed that data collected from graphenic materials that possess the same defect density $\left(\mathrm{n}_{\mathrm{D}}\right)$ form a line on the plane of $A_{\mathrm{D}} / A_{\mathrm{G}}-A_{2 \mathrm{D}} / A_{\mathrm{G}}$. Finally, a generalized equation to calculate defect density (n_{D}) or average inter-defect distance (L_{D}) was proposed.

Raman Shift (cm^{-1})

Raman Shift (cm ${ }^{-1}$

Experimental Calibration of Equi- n_{D} Line

A_{D} / A_{G}

CONTACT PERSON

Kazu Fujisawa

Shinshu University
Kfujisawa@shinshu-u.ac.jp

REFERENCES

[1]. Cançado, L. G. et al. Nano Lett. 11 (2011), 3190-3196 [2]. Kim, Y. A. et al. ACS Nano 6 (2012), 6293-6300

