Pawan Kumar Srivastava¹

Yasir Hassan², Duarte. J. P. de Sousa³, Yisehak Gebredingle², Minwoong Joe¹, Fida Ali², Yang Zheng², Won Jong Yoo², Subhasis Ghosh⁴, James T. Teherani⁵, Budhi Singh¹, Tony Low³, Changgu Lee^{1,2}

¹School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, S. Korea ²SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, S. Korea ³Department of Electrical and Computer Engineering, University of Minnesota, Minnesota 55455, USA ⁴School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India ⁵Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.

Contact@ pksri08@skku.edu

Resonant tunneling through twisted black phosphorus homostructures

The advent of atomically thin two-dimensional materials heterostructures open new opportunities for rethinking conventional semiconductors heterostructures devices such as light-emitting diodes¹, quantum well lasers², tunneling field-effect transistors³, resonant tunneling transistors, among many others. Here, we explore electronic transport in homostructures based on anisotropic material, black phosphorus and demonstrate the unprecedented degree of control that the relative staking twist angle between anisotropic layers has on the vertical transport behavior. Interlayer coupling strength between anisotropic layers depends sensitively on the twist angle and subsequently dictates the transport behavior from Ohmic to tunneling. Utilizing high quality homostructures made of orthogonally stacked anisotropic black phosphorus multilayers, we demonstrate resonant tunneling through quantum well states without the need of any physical tunneling materials⁴, hence achieving the largest tunneling conductance and peak-to-valley ratio in negative differential resistance characteristics.

References

- [1] F. Withers et al. Nat. Mater. 14 (2015) 301–306.
- [2] Y. Li et al. Nat. Nanotechnol. 12, (2017) 987–992.
- [3] X. Xiong *et al.* Nat. Electron. 3, (2020) 106–112.
- [4] S. Bhattacharyya et al. Nat. Mater. 5, (2006) 19–22.

Figures

Figure 1: (a) Schematics of the BP trilayer twisted homostructure device and HRTEM/STEM images which reveal (90°) twisted middle layer. **(b)** Resonant tunneling feature as obtained from device shown in (a).

Acknowledgements This work was supported by National Research Foundation of Korea (Grant no. 2016K1A1A2912707, 2018R1D1A1B07049669, 2019R1A2B5B01070477, 2020R1A2C2014687) and Samsung Research & Incubation Funding Center of Samsung Electronics under Project Number SRFC-TB1803-04.