GrapheneforUS

Filippo Giubileo¹

Enver Faella^{1,2}, Aniello Pelella^{1,2}, Alessandro Grillo^{1,2}, Maurizio Passacantando³, Marika Schleberger⁴, Niall McEvoy⁵ and Antonio Di Bartolomeo^{1,2}

¹CNR-SPIN Salerno, via Giovanni Paolo II, 132, Fisciano (SA), Italy

²Physics Department, University of Salerno, via Giovanni Paolo II, 132, Fisciano (SA), Italy ³Dept of Physical and Chemical Science, University of L'Aquila, and CNR-SPIN, via Vetoio, L'Aquila, Italy ⁴Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg D-47057, Germany ⁵AMBER & School of Chemistry, Trinity College Dublin, Dublin 2, Ireland

filippo.giubileo@spin.cnr.it

Transition metal dichalcogenide monolayers as gate controlled field emitters

Monolayers of molybdenum disulfide (MoS₂) and tungsten diselenide (WSe₂) have been synthetized by chemical-vapour deposition on a SiO₂/Si substrate. They were initially contacted to realize back-gated field-effect transistors, both showing n-type conduction under high-vacuum conditions. The n-type conduction enables field emission (FE), i.e. the extraction of electrons by quantum tunneling under the application of a high electric field. Local field emission measurements from the edges of the monolayers have been performed inside a scanning electron microscope (SEM) by using a nanomanipulated tip-shaped anode [1,2]. We demonstrate a turn-on field of the order of 100 V μ m-1 and a good time stability of the emitted current for both materials. Finally, we show that the field emission current can be modulated by the back-gate voltage, opening the way for the development of a field-emission vertical transistor.

References

- [1] Aniello Pelella, Alessandro Grillo, Francesca Urban, Filippo Giubileo, Maurizio Passacantando, Erik Pollmann, Stephan Sleziona, Marika Schleberger, and Antonio Di Bartolomeo, Adv. Electron. Mater, (2020) 2000838.
- [2] Antonio Di Bartolomeo, Francesca Urban, Maurizio Passacantando, Niall McEvoy, Lisanne Peters, Laura lemmo, Giuseppe Luongo, Francesco Romeo and Filippo Giubileo, Nanoscale, 11 (2019) 1538

Figures

Figure 1: (a) Layout of a back-gate FE transistor with a TMD monolayer channel over a SiO_2/Si substrate. (b) SEM images of the MoS₂ device. The red dashed square highlights the part of the flake used for field emission measurements. (c) Field emission current measured at d = 200 nm for increasing gate voltage.