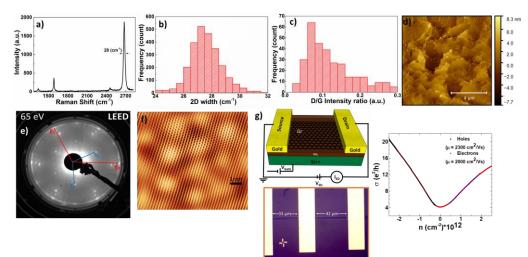
## <sup>1,2</sup>Neeraj Mishra

<sup>1</sup>S. Forti, <sup>1,2</sup>F. Fabbri, <sup>3</sup>C. McAleese, <sup>1</sup>L. Martini, <sup>4</sup>I. Aliaj, <sup>4</sup>S. Roddaro, <sup>6</sup>J.I. Flege, <sup>5</sup>P. Whelan, <sup>5</sup>P. Bøggild, <sup>3</sup>K. Teo and <sup>1,2</sup>C. Coletti


<sup>1</sup>Center for Nanotechnology Innovation, IIT@NEST, Piazza San Silvestro 12,56127 Pisa, Italy .<sup>2</sup>Graphene Labs, Instituto italiano di Tecnología, Vía Morego 30, 16163 Genova, Italy. <sup>3</sup>AIXTRON Ltd, Anderson Road, Swavesey, Cambridge CB24 4FQ, United Kingdom.<sup>4</sup>NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy. <sup>5</sup>DTU NANOTECH, Department of Micro and Nanotechnology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark. <sup>6</sup>Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany.

neeraj.mishra@iit.it

## Going beyond copper

It's insulating nature as well as its optical transparency make sapphire an appealing substrate for graphene for a vast number of optoelectronic applications. However, direct growth of graphene on sapphire has proved to be challenging, usually requiring metal-catalysts or yielding defective graphene. Here, we report that high-quality monolayer graphene obtained via chemical vapour deposition (CVD) on the c-plane of Al<sub>2</sub>O<sub>3</sub> (0001) substrates with a catalyst-free approach. The structural and chemical properties of the synthesized graphene are investigated by Raman spectroscopy, atomic force microscopy (AFM), low-energy electron diffraction (LEED) scanning-tunneling microscopy (STM) and low energy electron microscopy (LEEM). We are successfully able to scale up the process from batch to wafer scale (up to 4-inch wafer) keeping comparable quality and uniformity. The carrier mobility measured at room temperature is above 2200 cm<sup>2</sup>/Vs. Besides, we can transfer full wafer graphene from sapphire to any other desired substrate by polymer-assisted technique. The presented metal-free CVD approach is of sure appeal in virtue of its implementation in a commercial system and it might be an ideal graphene production approach for front-end-of-line (FEOL) integration. Furthermore, by scalably yielding high-quality monolayer graphene, it might have a positive impact on many optoelectronic applications. Finally, industrially impacting in-line coating of graphene will be discussed.

## **Figures**



**Figure 1: Graphene on sapphire characterization via** (a) Typical Raman spectra of graphene (b) Peak width of 2D (c) D/G intensity ratio, (d) AFM (e) LEED at 65 eV; (f) 2D-FFT filtered STM topography image (g) Transport measurements.

**Acknowledgement:** The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No.785219 – GrapheneCore2.