Computational model of the catalytic activity of monolayer amorphous carbon in hydrogen evolution reaction

Hanning Zhang¹

Ruslan Yamaletdinov¹, Lucas M. Sassi², Artem Grebenko², Hongji Zhang^{2,3}, Artemii Ivanov⁴, Chee Tat Toh^{2,3,8}, Rejaul SK⁵, Ugur Karadeniz³, Alena Alekseeva², Andrei Starkov³, Kostya Novoselov⁴, Alexander Fedorov⁶, Anna Makarova⁷, Denis Vialykh¹, Daria Bauemler⁴, Bent Weber⁵, Barbaros Oezyilmaz^{2,3,8}, Oleg Yazyev¹ ¹Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland ²Department of Physics, National University of Singapore, 117551, Singapore

³Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore

⁴Institue for Functional Intelligent Materials, National University of Singapore, 117544, Singapore ⁵Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

⁶Leibniz Institute for Solid State and Materials Research, Dresden, Germany ⁷Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin, Germany ⁸Centre for Advanced 2D Materials, National University of Singapore, 117546, Singapore <u>hanning.zhang@epfl.ch</u>

Abstract

We present a computational study on monolayer amorphous carbon (MAC), a topologically disordered sp²-hybridized carbon film, and promising alternative to expensive noble metal electrocatalysts [1]. Our findings indicate that out-of-plane buckling and an enriched electronic density of states near the Fermi level, both introduced by the high density of non-hexagonal rings, give rise to MACs enhanced catalytic activity towards hydrogen evolution reaction (HER). Using density functional theory (DFT), a broad distribution of hydrogen adsorption free energy values (ΔG_H) is further revealed, containing a significant number of active sites ($\Delta G_H = 0$) evenly scattered across the basal plane—setting MAC apart from other emergent 2D catalysts with activity confined to the edges [2][3]. The broadness of the distribution moreover suggests that, unlike conventional single-active-centre catalysts (e.g., Pt), MAC's catalytic activity may remain stable under varying conditions—such as changes in proton concentration or other environmental factors.

References

- [1] Toh, CT., Zhang, H., Lin J. et al., Nature, 577 (2020) 199-203
- [2] Nøskov, J.K., J. Electrochem. Soc., 152 (2005) J23
- [3] Li G., Zhang D., Qiao Q. et al., J. Am. Chem. Soc., 51 (2016) 16632-16638

Figures

Figure 1: Schematic illustration of MAC as a HER catalyst.