The role of Al₂O₃ interlayer in the synthesis of ZnS/Al₂O₃/MoS₂ and ZnS/Al₂O₃/TaSe₂ core-shell nanowires

B. Polyakov,

E. Butanovs, K. Kadiwala, L. Dipane, A. Trausa, D. Bocharov, A. Kuzmin Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia Boris.polyakov@cfi.lu.lv

Abstract

Mixed dimensional 1D/2D or core-shell nanowires with layered van der Waals material shell are intriguing type of nanomaterials, which allows to construct materials with multiple functional properties.

During the synthesis of such heterostructured nanomaterials, unwanted structural and morphological changes in nanostructures may occur, especially when multiple sequential growth steps are involved. In this study, we describe two different synthesis strategies of heterostructured ZnS/Al₂O₃/TaSe₂ (Figure 1) and ZnS/Al₂O₃/MoS₂ (figure 2) core-shell nanowires (NWs), and explore the role of the Al₂O₃ interlayer during synthesis [1, 2].

A reported strategy of the Al_2O_3 interlayer insertion can be used for the synthesis of other core-shell NWs with a transition metal dichalcogenides (TMDs) shell to protect the NW core material that may otherwise be altered or damaged by the reactive chalcogenides at high temperatures.

References

[1] B. Polyakov, K. Kadiwala, E. Butanovs, L. Dipane, A. Trausa, D. Bocharov, S. Vlassov, ChemEngineering 8 (2024) 25.

[2] E. Butanovs, A. Kuzmin, A. Zolotarjovs, S. Vlassov, B. Polyakov, Journal of Alloys and Compounds 918 (2022) 165648.

Figures

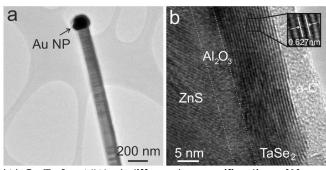


Figure 1: TEM images of ZnS/Al₂O₃/TaSe₂ NW at different magnifications [1].

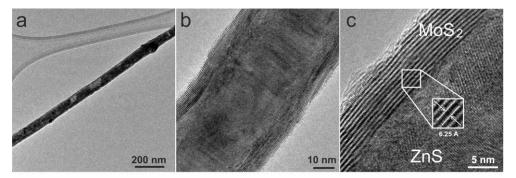


Figure 2: TEM images of ZnS/Al₂O₃/MoS₂ NW at different magnifications [2].

Graphene2025