# Critical Transport in Flat-Band Graphene Moiré Superlattices at High Bias

## Ekaterina Nguyen<sup>1,2</sup>

Julien Barrier<sup>1,2,3</sup>, Shuigang Xu<sup>1,2</sup>, Na Xin<sup>1,2</sup>, Sergey Slizovskiy<sup>1,2</sup>, Vladimir Fal'ko<sup>1,2</sup>, Andre Geim<sup>2</sup> <sup>1</sup> National Graphene Institute, Oxford Road, Manchester, United Kingdom <sup>2</sup> University of Manchester, Oxford Road, Manchester, United Kingdom <sup>3</sup> ICFO, Castelldefels, Barcelona, Spain Ekaterina.Nguyen@manchester.ac.uk

## Abstract

Electron transport in metals is usually described by slight perturbations of Fermi surface as a response to weak electric fields. However, this picture alone is no longer valid when the field shifts distribution of carriers far away from the equilibrium. The Schwinger-like production of charge carriers leads to critical behaviour of current density. Here, we investigate this critical transport behavior in graphene-based moiré superlattices exposed to high in-plane electric fields. We show that field necessary to reach supercritical behavior can be reduced by reducing the bandwidth of moiré materials. While the observed non-linear transport exhibits similarities with superconducting transitions, we emphasize that these effects arise from distinct mechanisms unrelated to conventional superconductivity. Our findings extend previous observations in graphene superlattices [1] and provide new insights into high-field transport in engineered low-dimensional materials, highlighting the role of band structure engineering in non-linear transport

### References

[1] Berdyugin, Alexey I., et al. Science 375.6579 (2022): 430-433.

### Figures



**Figure 1:** High-current transport in graphene moiré materials. (a) Schematic of the moiré device. Inset: flat band created from band-folding. (b) Differential resistance and voltage as a function of the current density. Black arrows indicate the critical current  $j_c$ . Inset: device micrograph.