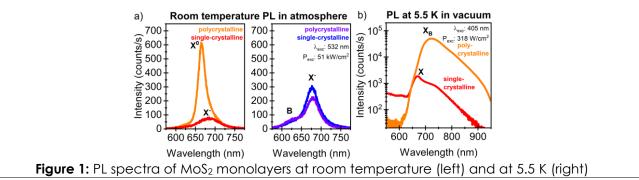
Tuning exciton emission in MOCVD grown MoS₂ monolayers: The role of charge transfer from the substrate

Henrik Myja¹

Pawan Kumar², Benjamin Groven², Steven Brems², Henry Medina Silva², Pierre Morin², Tilmar Kümmell¹, Gerd Bacher¹ ¹Werkstoffe der Elektrotechnik, University Duisburg-Essen, Bismarckstr. 81, 47057 Duisburg, Germany ²IMEC, Kapeldreef 75, 3001 Leuven, Belgium


henrik.myja@uni-due.de

Manufacturing (opto-)electronic devices based on 2D materials relies on the development of methods to deposit single-crystalline transition metal dichalcogenides (TMDs), such as metalorganic chemical vapor deposition (MOCVD). Currently, the electrical performance of TMD monolayers (MLs) deposited via MOCVD is limited by grain boundaries (GBs), vacancies or interface states that reduce charge carrier mobility, affect charge carrier concentration or favour nonradiative recombination [1]. Low temperature photoluminescence (PL) spectroscopy has successfully been used, e.g. to assign bound exciton emission to sulphur vacancies [2] or to reveal the impact of the growth substrate and its surface termination onto the population of in-gap defect states [3, 4]. Nevertheless, it remains elusive how microscopic defect structure originates from the growth and how it can be conceived from PL signatures. We employ temperature- and ambient-controlled PL to reveal defect mechanisms in MoS₂ on sapphire substrates and after transfer to device-grade Si/SiO_2 substrates. 1.2 ML of MoS₂ is deposited on 2-inch c-plane sapphire by MOCVD from Mo(CO)₆ and H₂S precursors using an industry-standard 200 mm CVD reactor [5]. We compare polycrystalline (pc) and singlecrystalline (sc) ML of MoS₂ with stark difference in number density and type of GBs [5, 6]. Darkfield transmission electron microscopy does not detect high-angle and mirror GBs in the sc MoS₂ ML, as opposed to the pc MoS₂ ML with an average domain size of ~1 µm. Surprisingly, the room temperature PL signal of the sc MoS₂ is dominated by low intensity and charged exciton emission, while the pc MoS_2 lead to an intense neutral exciton emission. After transfer to SiO₂ this difference completely disappears demonstrating the dominant role of the substrate rather than the grain size on the emission process. Low temperature PL studies reveal defectbound exciton emission that is substantially different between the sc and $pc MoS_2$ on sapphire. The sc MoS_2 exhibits a very weak defect PL with some contribution of near band edge emission, while in case of the pc MoS_2 the emission is controlled by an intense defect bond. We attribute these findings to a different sapphire termination [7] resulting from surface reconstruction during the growth, that affects the charge transfer between the substrate and the MoS₂ ML.

References

- [1] Y. Wang et al, Nature Electronics, 7 (2024) 638
- [2] V. Carozo et al. Science Advances, 3 (2017) e1602813
- [3] S. Park et al. ACS Nano, 15 (2021) 14794
- [4] K. T. Munson et al. The Journal of Physical Chemistry Letters, 15 (2024) 7850
- [5] Y. Shi et al. ACS Nano, 15 (2021) 9482
- [6] I. Kandybka et al. ACS Nano, 18 (2024) 3173
- [7] V. Spampinato et al. Advanced Material Interfaces, 10 (2023) 2202016

Figures

Graphene2025

San Sebastian (Spain)