Shift Vector Effects in High-Harmonic Generation by Massive Carriers in 2D Hexagonal Nanostructures

G. F. Mkrtchian

H. K. Avetissian Centre of Strong Fields Physics at Research Institute of Physics, Yerevan State University Yerevan 0025, Armenia mkrtchian@ysu.am

The discovery of graphene [1] has catalyzed the search for novel nanomaterials with exceptional electronic and structural properties [2]. similarly Advances in nanotechnology over the past two decades have enabled the synthesis of graphene-like two-dimensional (2D) materials—such as silicene, germanene, and stanene [3]—that exhibit high carrier mobility and suppressed scattering. These materials consist of buckled honeycomb lattices with sublattices composed of A and B atomic sites. Unlike graphene, however, the Dirac quasiparticles in these systems acquire a finite mass due to strong spin-orbit coupling, reaching approximately 65 meV in stanene. Notably, this mass can be tuned via a perpendicular electric field, leading to nontrivial changes in the band topology [4]. Such tunability introduces a rich landscape of nonlinear optical phenomena not accessible in gapless graphene [5].

In this work, we investigate the nonlinear light-matter interaction in these 2D nanostructures using a four-band, second-nearest-neighbor tight-binding model that incorporates spin-orbit coupling and inversion symmetry breaking. Optical excitation in these systems induces a directional charge displacement described by the shift vector, a gauge-invariant quantity combining the derivative of the transition dipole phase and differences in intraband Berry connections. Alongside the Berry curvature [6], the shift vector plays a fundamental role in governing the optical and topological response of these materials.

Using time-domain numerical simulations of the quantum kinetic equation for the density matrix, we analyze the role of the shift vector in the high-harmonic generation (HHG) response. We demonstrate that time- and polarization-resolved HHG spectroscopy provides an all-optical, strong-field probe capable of revealing nontrivial band topology in these 2D hexagonal systems.

The work was supported by the Science Committee of Republic of Armenia, project No. 21AG-1C014.

References

- [1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81 (2009) 109
- [2] A. K. Geim and I. V. Grigorieva, Nature 499 (2013) 419
- [3] F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Nat. Mater. 14 (2015) 1020
- [4] D. Xiao, M. C. Chang, and Q. Niu, Rev. Mod. Phys. 82 (2010) 1959
- [5] H. K. Avetissian, G. F. Mkrtchian, A. Knorr, Phys. Rev. B 105 (2022) 195405
- [6] H. K. Avetissian, H. H. Matevosyan, G. F. Mkrtchian, Phys. Rev. B 111 (2025) 045415