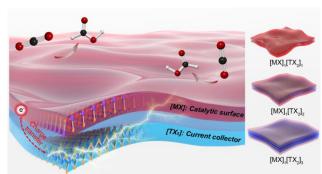
P-block metal monochalcogenides for CO₂ electroreduction *via* noninvasive van der Waals doping

Pengfei Li¹


Wenping Hu², Jiong Lu¹ ¹Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore. ²Tianjin Key Laboratory of Molecular Optoelectronics, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China chmluj@nus.edu.sg

P-block metal monochalcogenides (MX) with black phosphorus-like structures are promising CO₂ reduction electrocatalysts due to their exposed metal sites and tunable electronics but face instability from lone-pair electron distortions and CO₂'s LUMO orbital mismatch. We propose a non-invasive van der Waals (vdW) doping strategy using misfit superlattices, combining MX with conductive transition metal dichalcogenide (TX₂) sublayers. Using [BiS]₁[TaS₂]₁ as a model, we show that vdW doping stabilizes BiS by adjusting Bi's valence to Bi^(2+δ) via ionic interactions and charge transfer, aligning Bi's p-orbital with CO₂'s LUMO to lower the activation barrier. DFT and in-situ studies confirm optimized Bi sites with strong *OCHO adsorption, achieving >90% formate selectivity and >110 mA·cm⁻² partial current density at -1.1 V. HAADF-STEM and XPS verify [BiS]₁[TaS₂]₁'s high-purity, crystalline structure with excellent stability and exfoliability. Compared to [SnS]₁[TaS₂]₁ and [PbS]₁[TaS₂]₁, [BiS]₁[TaS₂]₁ excels in intrinsic activity. This vdW superlattice approach stabilizes p-block materials, tunes sublayer interactions, and enhances electrocatalytic efficiency for sustainable CO₂ conversion.

References

- [1] P. Li, et al. J. Am. Chem. Soc, (2025), 10.1021/jacs.5c03556.
- [2] P. Li, et al. Adv. Energy Mater. 13 (2023), 2301597

Figures

Figure 1: Non-invasive van der Waals doping in [MX]_m[TX₂]_n misfit superlattices for enhanced CO₂ electroreduction.