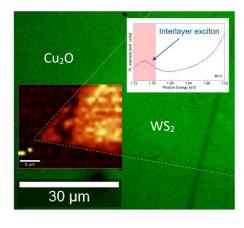
Tunable Optical and Electronic Interactions in 2D WS₂/Cu₂O Heterostructures

Osamah Kharsah


Jonah von Kuczkowski, Ahmad Shahin, Kevin Musselman, and Marika Schleberger University of Duisburg-Essen, Lotharstr. 1, Duisburg, Germany University of Waterloo, 200 University Ave, Waterloo, ON, Canada osamah.kharsah@uni-due.de


2D transition metal dichalcogenides (2D TMDCs), such as WS₂, exhibit remarkable optical properties, making them highly promising for electronic and optoelectronic applications in various heterostructures [1]. Among these, WS₂/Cu₂O has gained significant interest for use in solar cells and sensors [2]. However, a comprehensive understanding of its electrical and optical interactions remains elusive. This work investigates WS₂/Cu₂O heterostructures, where WS₂ is synthesized via chemical vapor deposition (CVD) and Cu₂O is deposited using spatial atomic layer deposition (SALD), a scalable and efficient method for fabricating high-quality Cu₂O thin films. The interplay between band alignment, interfacial defects, and the formation of a CuO surface layer leads to complex recombination dynamics, which we analyze using steady-state, low-temperature, and power-dependent photoluminescence (PL) spectroscopy. Additionally, Raman spectroscopy and Kelvin probe force microscopy (KPFM) provide further insights into the structural integrity and electronic behavior of the heterostructure. The presence of interlayer excitons at the WS₂/Cu₂O interface seen in figure 1, along with spectral overlap in their PL emissions, reveals diverse optoelectronic processes governing charge carrier transitions. Furthermore, we demonstrate that the PL emission energy can be tuned through SALD deposition parameters, offering a pathway for engineering the optical properties of the heterostructure. We believe that these insights provide a foundation for future research and optimization, facilitating the integration of WS₂/Cu₂O heterostructures into next-generation optoelectronic devices.

References

- [1] Wang et al, Nature Nanotech, 7 (2012) 699-712
- [2] Singh et al, Environ Sci Pollut Res, 30 (2023) 98718–98731

Figures

Figure 1: (Left) Power-dependant PL of WS₂ on Cu₂O. (right) PL map overlapped on a microscope image of WS₂ with the energy region of the interlayer exciton showing the outline of the WS₂ flake.