Magneto-lattice coupling in charge modulated intercalated transition metal dichalcogenides

Arunava Kar^{1,*}

Artem Korshunov¹, David Subires¹, Chan-young Lim¹, Alex Frano², Victor Pardo³ and Santiago Blanco-Canosa^{1,4}

¹Donostia International Physics Center (DIPC), San Sebastian, Spain.

²Department of Physics, University of California San Diego, San Diego, California 92093, USA.

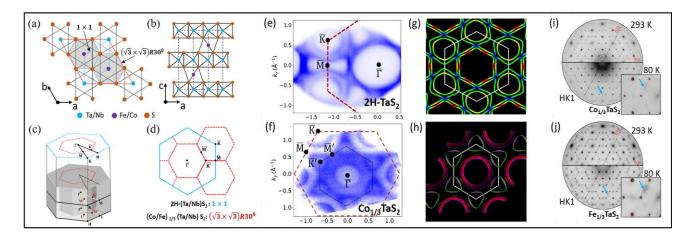
³Departamento de Fisica Aplicada, Universidade de Santiago de Compostela, E-15782 Campus Sur s/n, Santiago de Compostela, Spain.

4KERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.

*phys.arunava20@gmail.com

The large van der Waals gap in transition metal dichalcogenides (TMDs) offers a playground to host external metal atoms that modify the ground state of these 2D materials. Here, we experimentally and theoretically address a new charge density wave (CDW) phase in a family of intercalated TMDs. While short-range charge fluctuations develop in $Co_{1/3}TaS_2$ and $Fe_{1/3}TaS_2$, the long-range CDW switches-on in $Fe_{1/3}NbS_2$ are driven by the interplay of magnetic order and lattice degrees of freedom. The magnetoelastic coupling is demonstrated in $Fe_{1/3}NbS_2$ by enhancing the charge modulations upon the magnetic field below T_N , although Density functional perturbation theory (DFPT) calculations predict negligible electron(spin)-phonon coupling. Furthermore, we show that Co-intercalated TaS_2 displays a Kagome-like Fermi surface, hence opening the path to engineer electronic band structures and study the entanglement of spin, charge, and spin-phonon mechanisms in the large family of intercalated TMDs.

References


[1] P. Park et al., Nature Communications 2023, 14, 8346.

[2] A. Little et al., Nature materials 2020, 19, 1062–1067.

[3] S. Wu et al., Physical Review Letters 2023, 131,186701

[4] S. Mangelsen et al., J. Phys. Chem. C 2020, 124, 45, 24984–24994.

Figure:

Figure 1: (a)-(b) Geometric structure of $(Fe/Co)_{1/3}(Ta/Nb)S_2$, viewed along c and b axis, respectively. (c)-(d) Bulk and surface projected First Brillouin zone of 1/3 Transition metal intercalated 2Ha-TMDC systems. The side of superstructure BZ is shrined by $(1/\sqrt{3})$ amount of the 1x1 BZ of the parent compounds and also rotated by 30°. (e)-(f) Experimental FS of 2H-TaS₂ and (Co)_{1/3}TaS₂ obtained in ARPES, while (g)-(h) are DFT computed FS in the corresponding materials. (i)-(j) Diffuses scatted spectra obtained in HK1 plane in Co_{1/3}TaS₂ and Fe_{1/3}TaS₂, respectively.

Graphene2025