Proximity-induced "magic" Raman bands in TERS spectra of MoS₂ and WS₂ deposited on the 1L h-BN-capped gold

Alice Fiocco¹

Pavel Valencia Acuna², Andrey Krayev³, Ju-Hyun Jung⁴, Cheol-Joo Kim⁴, Andrew Mannix⁵, Eleonora Isotta⁶, Chih-Feng Wang², Patrick El Khoury², Joao-Lucas Rangel¹

¹HORIBA France SAS, 14 boulevard Thomas Gobert - Passage Jobin Yvon, Palaiseau, France
²Pacific Northwest National Laboratory, Richland, WA, USA
³HORIBA Scientific, Novato, CA, USA
⁴Department of chemical engineering, POSTECH, Pohang, Korea
⁵Department of materials science and engineering, Stanford university, Stanford, CA, USA
⁶Max Plank Institute for Sustainable Materials, Düsseldorf, Nordrhein-Westfalen, Germany

alice.fiocco@horiba.com

The nanoscale resolution of tip-enhanced Raman scattering (TERS) makes it a powerful tool to image and identify structural properties and defects in 2D semiconductors. Recently, we proposed an "ideal" substrate for gap-mode TERS and tip-enhanced photoluminescence (TEPL), namely 1L h-BN-capped gold or silver [1], which demonstrated a strong response from a WS₂ monolayer, exfoliated on it. Unexpectedly, in addition to the Raman bands of WS₂, we observed strong narrow bands (at-76 cm⁻¹ and ~796 cm⁻¹) that normally do not appear in the normal Raman spectra of neither WS₂ nor h-BN. Since these bands were observed in the same spectral position in the TERS spectra of MoS2@1L h-BN@Au, it can be assumed that they originated from h-BN. In the literature [2,3] a similar effect was observed in the far-field Raman spectra of h-BN-encapsulated WSe₂. However, in our case the dependency on the excitation wavelength of the intensity of the "magic bands" was completely different, strongly resembling the one of the A'/A_{1g} ratio of WS2@Ag [1], with the magic bands disappearing at the excitation laser energy corresponding to A exciton in WS₂. We will here discuss possible origins of these magic bands, as well as the nature of such unexpected excitation wavelength dependence.

References

- [1] A. Krayev et al., ACS Photonics (2025)
- [2] C. Jin, J. Kim, J. Suh et al., Nature Physics (2017), 13, 127–131
- [3] J. J. S. Viner, L. P. McDonnell, P. Rivera, X. Xu, D. C. Smith, Physical Review B (2021) 104,
- 165404

Figure

Figure: TERS spectra (left) averaged from a hyperspectral map (right) of WS₂@1L h-BN@Au.