Self-organized 2H | 3R lateral boundaries in bilayer WSe₂ grown by chemical vapor deposition

Gaia Di Berardino

Meryem Bouaziz, Gilles Patriarche, Julien Chaste, Abdelkarim Ouerghi, and Fabrice Oehler Université Paris-Saclay, CNRS, Center of Nanosciences and Nanotechnologies, Palaiseau, France gaia.di-berardino@universite-paris-saclay.fr

The transition metal dichalcogenides (TMDs) family exhibits a variety of polytypes in the bilayer (2ML) form, with the most known being the rhombohedral AB bilayer (noncentrosymmetric, 3R-like) and the hexagonal AA' bilayer (centrosymmetric, 2H) ^[1]. The 3R bilayer structure of TMDs is particularly notable for supporting a permanent ferroelectric polarization, attributed to its reduced symmetry ^[2]. In this study, we investigate self-organized 2H | 3R boundaries in mixed-phase 2ML WSe₂ crystals grown by chemical vapor deposition (CVD) ^[3], as shown in Fig.1(a). We utilize micro-Raman and second harmonic generation (SHG) techniques to differentiate and assign the different polytype domains, see Fig.1(b-c). Additionally, we find that transmission electron microscopy (TEM) provides useful complementary information for polytypes identification ^[4]. Finally, in Fig.1(d), we use dark field (DF)-TEM to resolve a characteristic sawtooth structure at the 2H | 3R boundary whose proposed atomic reconstruction can be related to twin boundaries in other TMDs ^[5].

References

- [1] A. Mahmoudi, <u>G. Di Berardino</u> et al., Physical Review B 108, 4 (2023) 045417.
- [2] X. Wang et al., Nature Nanotechnology 17 (2022) 367.
- [3] G. Di Berardino et al., Physical Review B, accepted (2025).
- [4] Z. Zeng et al., Advanced Functional Materials 29, 11 (2019) 1806874.
- [5] D. Reifsnyder Hickey et al., Nano Letters 21, 15 (2021) 6487.

Figures

Figure 1: (a) Monocrystal WSe₂ with near complete 2ML coverage and hint of different stacking order: 3R main region and 2H inclusions. (b) Room-temperature integrated Raman intensity map on the A_{1g} mode. (c) Room-temperature SHG intensity map. (d) Dark field TEM image of the real space 2H | 3R lateral boundary, obtained by selecting the 100 reflection, with proposed atomic reconstruction of phase boundary.

Graphene2025