Influence of MOCVD MoS₂ Material Properties on Memristor Switching Voltage and Resistance State Variability

Dennis Braun¹, Jing Liu¹, Poonam Devi¹, Vasilis Maroufidis^{2,3}, Hui Bian^{1,4}, Lukas Völkel¹, Hleb Fiadziushkin⁵, Jimin Lee¹, Sofía Cruces¹, Annika Grundmann⁵, Songyao Tang⁵, Yibing Wang⁵, Ke Ran^{2,3,4}, Thorsten Wahlbrink⁴, Holger Kalisch⁵, Andrei Vescan⁵, Joachim Mayer^{2,3}, Michael Heuken^{5,6}, Alwin Daus^{1,7}, and Max C. Lemme^{1,4}

¹Chair of Electronic Devices (ELD), RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany. ²Central Facility for Electron Microscopy (GFE), RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany. ³Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C 2), Forschungszentrum Jülich, 52425 Jülich, Germany. ⁴AMO GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany. ⁵Compound Semiconductor Technology (CST), RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany. ⁶AIXTRON SE, Dornkaulstr. 2, 52134 Herzogenrath, Germany. ⁷Institute of Semiconductor Engineering, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany.

Dennis.braun@eld.rwth-aachen.de

Layered 2D MoS₂ has been extensively studied as an active material for memristors [1-5]. However, MoS₂-based memristors generally suffer from high variability and low yield [1,2]. This work addresses the influence of the surface properties of MOCVD-grown multilayer MoS₂ on the memristor variability. We fabricated vertical MoS₂ memristors with palladium (Pd) back electrodes (BE) and aluminum (AI) top electrodes (TE) using two different MoS₂ batches. Batch 1 has a smooth surface (roughness 1 nm) with large hexagonal and triangular crystallites and large grain boundaries. In contrast, batch 2 has a rougher surface (3.4 nm), smaller crystallites, and surface contaminations. Current-voltage (I-V) sweeps were performed on 63 devices with batch 1 and 59 devices with batch 2. The cumulative distributions of 1735 (batch 1) and 533 (batch 2) switching cycles show that batch 1 devices exhibit significantly lower variability in the switching voltages and resistance states. We show that our memristors switch via metallic filament formation of AI through MoS₂. Thus, we attribute the improved variabilities to more uniform filament formation through fewer grain boundaries [4,5] enabled by the large crystallites. Our work shows a pathway to reduce the variability of 2D memristors by tuning the grain boundary size and structure, achieving high device yields (95%) for MOCVD-grown MoS₂.

Acknowledgment: Funding from the German BMBF through NEUROTEC 2 (16ME0399, 16ME0400, 16ME0403) and NeuroSys (03ZU1106AA, 03ZU1106AB, 03ZU2106AB) References

- [1] Y. Huang et al., Adv. Funct. Mater. 34, 2214250 (2024)
- [2] X. Wu et al., Npj 2D Mater. Appl. 2022 61 6, 1–12 (2022)
- [3] Y. Lee et al., ACS Nano 18 (22), 14327-14338 (2024)
- [4] S. Mitra & S. Mahapatra, Npj 2D Mater. Appl. 8, 1–14 (2024)
- [5] H. Yan et al., Adv. Electron. Mater. 2400264 (2024)