Antisymmetric magnetoresistance in graphene /Cr2Ge2Te6 heterostructure

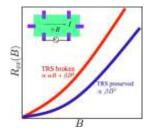
Divya Sahani¹

Sunit Das² Kenji Watanabe, Takashi Taniguchi, Amit Agrawal² Aveek Bid¹

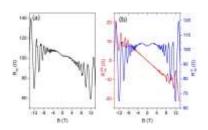
¹Indian Institute of science, Bangalore, India

²Indian Institute of Technology, Kanpur, India

divyasahani@iisc.ac.in


Graphene with peculiar electronic properties, is a promising material for future application for spintronics and magnetoelectronic. Combining graphene with recently discovered 2d magnetic material can unlock the new functionality of semiconducting devices. Pairing graphene with ferromagnetic substrate can enable the proximity induced magnetism in the graphene. In this work we study electronic and magneto transport properties of the graphene/Cr₂Ge₂Te₆ heterostructure. Our experiment revels the unique antisymmetric magnetoresistance (ASMR) observed in graphene/Cr₂Ge₂Te₆ heterostructure. Additionally, we explore the unique characteristic of ASMR, its dependence on gate voltage and temperature, arising from the interplay between graphene and ferromagnetic semiconductor (Cr₂Ge₂Te₆).

References


- [1] Takiguchi, K., Anh, L.D., Chiba, T. et al., Nat Commun, 13, 6538 (2022)
- [2] Wang, Y., Lee, P.A., Sile itch, D.M. et al., Nat Commun 11, 216 (2020)
- [3] Chun-Chih Tseng, Tiancheng Song, et al., Nano Letters 2022 22 (21), 8495-8501

Figures

Figure 1: Figures describe the magnetoresistance behaviour in the Graphene system. With broken intrinsic Time reversal symmetry longitudinal magnetoresistance shows an extra linear component which is antisymmetric in nature along with quadratic dependence.

Figure 2: Figure 2(a) is the plot of longitudinal magnetoresistance against magnetic field B, for the heterostructure, shows clear signature of antisymmetric component. In Figure 2(b), both the symmetric and antisymmetric components of longitudinal magnetoresistance are shown, with the antisymmetric component exhibiting a linear finite behaviour.

