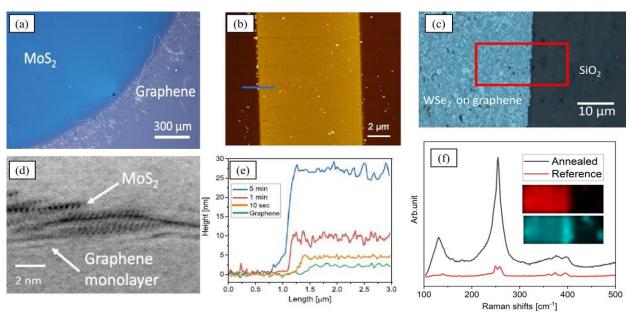
Electrodeposited TMDCs on graphene

Jiapei Zhang¹

Yasir J Noori¹, Shibin Thomas¹, Nema Abdelazim¹, Sami Ramadan², Victoria Greenacre¹, Shaokai Song¹, Yisong Han³, Richard Beanland³, Gill Reid¹, Philip N Bartlett¹, Kees de Groot¹

¹University of Southampton, Southampton, UK ²Imperial College, London, UK ³University of Warwick, Coventry, UK <u>iz9u19@soton.ac.uk</u>


Abstract

Transition metal dichalcogenides (TMDC) consist of a covalently bonded lattice. The van der Waals interactions between the layers allow the integration of very different materials without the constraints of crystal lattice matching. The development of scalable techniques to make two-dimensional transition metal dichalcogenides (2D-TMDC) material is a major obstacle that needs to be overcome before these materials can be implemented in device technologies. Electrodeposition is an industrially compatible deposition technique that offers unique advantages in scaling 2D heterostructures. In this work, we demonstrate the electrodeposition of few layer MoS₂, WS₂ and WSe₂ on graphene substrate. Through the characterisation techniques of Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and Raman spectroscopy, we demonstrate high quality and uniform electrodeposited TMDCs film on graphene.

References

- [1] Y. J. Noori, S. Thomas, S. Ramadan, et al., IOP 2D Mater., 9 (2022).
- [2] Y. J. Noori, S. Thomas, S. Ramadan, et al., ACS Appl. Mater. Interface, 12 (2020) 49786.
- [3] N. Abdelazim, Y. J. Noori, S. Thomas, et al., Wiley Adv. Electron. Mater., (2021) 2100419.
- [4] S. Thomas, V. Greenacre, et al., Chemical Communications, 57 (2021) 10194.

Figures

Figure 1: (a)Optical microscope image of electrodeposited MoS₂ on graphene. (b) AFM image of electrodeposited WS₂ on patterned graphene. (c) Optical microscope image of electrodeposited WSe₂ on patterned graphene. (d) TEM image of electrodeposited MoS₂ on graphene. (e)Height profile comparison of electrodeposited WS₂. (f) Raman spectrum of electrodeposited WSe₂ with the inset of Raman mapping of WSe₂ and graphene from top to bottom.

Graphene 2024