Tailoring few-layers van der Waals crystals through galvanostatic molecular intercalation

Daniel Tezze¹

José M. Pereira¹, Covadonga A. García¹, Enrique A. García¹, Felix Casanova^{1,3}, Beatriz Martín-García^{1,3}, Maider Ormaza⁴, Luis E. Hueso^{1,3} and Marco Gobbi^{2,3}.

- ¹ CIC nanoGUNE BRTA, 20018 San Sebastian, Spain.
- ² Materials Physics Center CSIC-UPV/EHU, 20018 Donostia-San Sebastian, Spain.
- ³ IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.

⁴ Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del

País Vasco, Paseo Manuel de Lardizabal 3, San Sebastián 20018, Spain.

d.tezze@nanogune.eu

Intercalation of guest species in van der Waals materials is an effective technique for customizing their properties.[1–2] The process can be achieved through different methods, that have been explored predominantly for bulk samples[3], which are impractical for the fabrication of novel nanodevices. The use of intercalated compounds in (quantum) electronic devices [4] demands controlled intercalation regimes in reduced-dimensions systems (thin flakes). This task is particularly challenging due to the complexity of the setup involved in conventional intercalation approaches. Herein, we present a paradigmatic novel route based on a galvanostatic electrochemical approach (**fig. 1a**) to directly intercalate pre-exfoliated 2H-TaS₂ flakes with cationic molecular species, revolutionizing its the state-of-the-art intercalation strategy. Our methodology yields intercalated 2H-TaS₂ flakes with unprecedented crystallinity (**fig. 1b**), crucial for integration in devices for electronics and quantum computing. Different molecular cations can be controllably intercalated, permitting to tune the on-set of superconductivity (**fig. 1c**). Moreover, we tailor the intercalation mechanism to spatially control phases within a single flake, potentially enabling van der Waals lateral heterojunctions.

References

- [1] J. Zhou et al. Adv. Mat. 33 (2021) 2004557
- [2] J. M. Pereira et al. Advanced Physics Research 2023, 2, 2200084.
- [3] H. Zhang, et al. Science B. 65 (**2020**) 188
- [4] Z. Li, et al. Small Meth. 5 (**2021**) 2100567

Figures

Figure 1: a) Schematic of the galvanostatic cell employed for the intercalation of 2H-TaS₂ with organic ions (G⁺). **b)** XRD patterns of pristine 2H-TaS₂ and three alkylammonium intercalates (TMA_xTaS₂, TEA_xTaS₂ and TBA_xTaS₂), obtained by the galvanic approach (coloured lines) and the XRD patterns of the same intercalates using the chemical approach (grey lines). **c)** Normalized resistance measured for three alkylammonium intercalated 2H-TaS₂ thin flakes (~10L).

Graphene2024