Enhanced ppt-Level NO₂ Detection Using Hierarchical C-MoS₂ Nanobranches

Jeongin Song^{1,2}

Jinill Cho², Taesung Kim², Muyoung Kim³, Ha Sul Kim⁴, Sang–Woo Kang^{1,5}, and Jihun Mun^{1*} ¹Korea Research Institute of Standards and Science, Daejeon, Republic of Korea ²Sungkyunkwan University, Suwon, Republic of Korea ³Korea Institute of Machinery and Materials, Daejeon, Republic of Korea ⁴Chonnam National University, Gwangju, Republic of Korea ⁵University of Science and Technology, Daejeon, Republic of Korea jmun@kriss.re.kr

A continuous increase in atmospheric emissions of industrial hazardous gases highlights the critical importance of monitoring toxic gases such as NO2 to safeguard public health. Furthermore, as the contamination problem caused by fine residual gases has been raised at semiconductor manufacturing sites, the demand for the development of ppt-level gas sensors has increased. This study explores novel approaches to enhance NO_2 sensing capabilities utilizing hierarchical C-MoS₂ nanobranches incorporating carbon for augmented reactivity. Using the metal-organic chemical vapor deposition (MOCVD), we synthesized large-scale, uniformly distributed C-MoS₂ nanobranches rich in adsorption edge sites. Through controlled carbon impurity incorporation during synthesis, we engineered a hierarchical structure conducive to heightened gas interaction. Our gas sensors, based on these tailored nanobranches, demonstrated exceptional sensitivity, detecting NO₂ concentrations as low as 5 ppb with a response factor of $1.67 (R_0/R_{gas})$ at room temperature. Notably, the calculated limit of detection for NO₂ reached an impressive ~1.58 ppt, showcasing the remarkable performance of our sensor platform. This research not only advances the frontier of material engineering but also heralds a new era of ultra-sensitive NO₂ detection vital for environmental and industrial monitoring.

Figures

Figure 1: Schematic of C-MoS₂ nanobranches gas sensor and response curves of the gas sensor for NO₂ concentration of 5–50 ppb.

Acknowledgements

This research was supported by Development of core technologies for advanced measuring instruments funded by Korea Research Institute of Standards and Science (KRISS – 2024 – GP2024-0012), and was supported by the MOTIE(Ministry of Trade, Industry & Energy) (NTIS – 1415187510) and KSRC(Korea Semiconductor Research Consortium) (KEIT – 2023 – RS-2023-00235156) support program for the development of the future semiconductor device.

Graphene2024