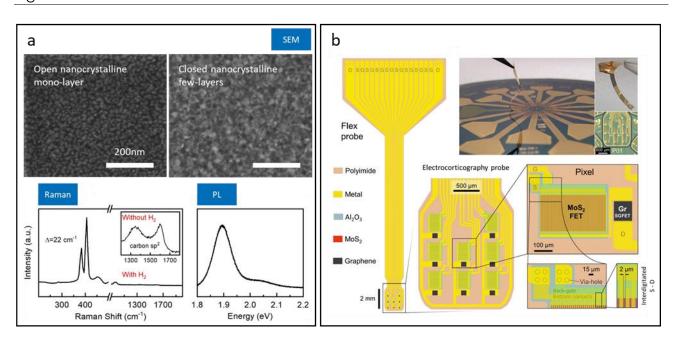
MoS₂ growth and device technology implementing high-k dielectrics; towards integration with multiplexed graphene sensors arrays


Laura Remacha Gelabertó

C. M. Schaefer, E. Masvidal, X. Illa, E. del Corro, J. A. Garrido Catalan Institute of Nanoscience and Nanotechnology (ICN2), UAB Campus, 08193 Bellaterra, Barcelona, Spain laura.remacha@icn2.cat

2D semiconductors are of paramount importance for More Moore and More-than-Moore applications. This poster presents an overview of the technology challenges, with a special focus on the high-k dielectric integration, for developing efficient and reliable MoS₂ Field Effect Transistors (FETs), towards the monolithic integration of MoS₂ FETs with multiplexed graphene sensors on flexible probes for biomedical applications.

References

- [1] Lemme M.C. et al., Nature Communications 13, 2D materials for future heterogeneous electronics (2022) 1392.
- [2] Masvidal Codina E. et al., Nature Materials 18, High resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors (2019) 280-288
- [3] Schaefer N. et al., 2D materials 7, Multiplexed neural sensor array of graphene solution gated field effect transistors (2020) 025046
- [4] Schaefer C.M. et al., Chem. Mater 33, Carbon incorporation in MOCVD of MoS₂ thin films grown from an organosulfide precursor (2021) 4474-4487

Figure 1: a) Material characterization of the MoS₂ grown on SiO₂ by Metal-Organic Chemical Vapor Deposition using molybdenum hexacarbonyl and diethyl sulfide as precursors, and hydrogen gas to reduce the carbon incorporation mainly introduced by diethyl sulfide. **b)** Illustrations and pictures of the monolithic integration of MoS₂ FETs and graphene solution gated FETs on a flexible probe for high density neural recordings.

Figures