Saroj Poudyal^{1, 2}

Prahalad K Barman, ^{1,2} Renu Yadav, ^{1,2} Bubunu Biswal, ^{1,2}, Rajarapu Ramesh, ^{1,2} Abhishek Misra^{1,2,*} ¹Centre for 2D Materials Research and Innovations, Indian Institute of Technology, Madras 600036, India ²Department of Physics, Indian Institute of Technology, Madras 600036, India spsarojpoudyal@gmail.com

Anisotropic two-dimensional materials provide promising platforms for polarization-driven optoelectronic and photonic devices. In particular, ReS₂ offers rich anisotropic electrical and optical properties due to low symmetry triclinic structure. Due to in plane anisotropy, the photoluminescence of ReS₂ is dominated by excitons with different polarization orientation. Herein, we have studied the polarization resolved and gate voltage dependent photoluminescence (PL) from few layer ReS₂ at cryogenic temperature (5K). The relative oscillator strength of two excitons of ReS₂ is tuned by changing the detection polarization and we are able to see the relative orientation of two dipole ~ 60° as shown in Figure 1 (a). With the rotation of polarization angles only one (X_1 or X_2) exciton is dominating over another. We observed that same effect as rotation of polarization can be accomplished by using the back gate voltage with un-polarized detection of PL as shown in Figure 1 (b). At a particular gate bias, one of the exciton (X_1) is quenched and the PL from ReS₂ becomes highly directional. This tuning of polarization using gate voltage, opens up avenue for on demand polarization of emitted light.

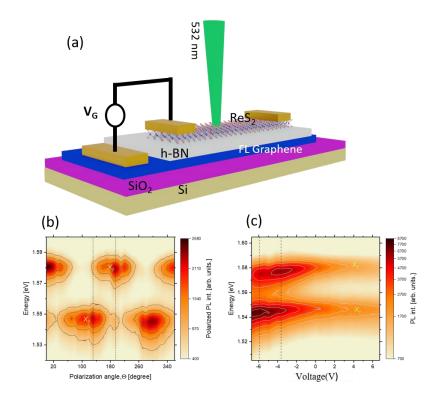


Figure 1 (a) Schematic of device used for gate voltage dependent polarization studies of ReS_2 . (b) Polarization dependent PL of ReS_2 at 5K. (b) Gate tunable PL of ReS_2 shows that at large negative bias, X₁ quenches and emission becomes dominated by X₂