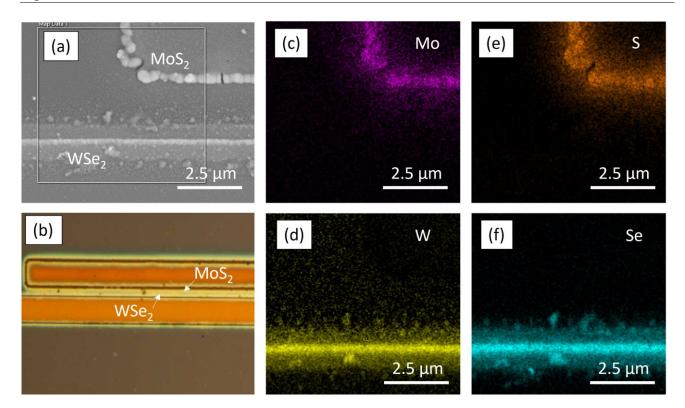
2D Heterostructures by Electrochemical Deposition

Yasir J Noori¹

Shibin Thomas¹, Nema Abdelazim¹, Sami Ramadan², Victoria Greenacre¹, Shaokai Song¹, Yisong Han³, Richard Beanland³, Norbert Klein³, Gill Reid¹, Philip N Bartlett¹, Kees de Groot¹

¹University of Southampton, Southampton, UK

y.j.noori@southampton.ac.uk


Abstract

Growing heterostructure of 2D materials in a scalable fashion remains a major obstacle that needs to be overcome before these materials can make an impact in industries. Electrochemical deposition is a widely used technique in the semiconductor industry that can grow materials over wafer scales. In our group, we have been pushing the boundaries of the electrochemical deposition technique to offer an alternative solution for growing TMD heterostructures based on MoS₂, WS₂, WSe₂, and graphene. We will demonstrate a novel design of electrodes that allow 2D heterostructures to be electrochemically deposited in micro and nanostructures at large scales and over insulating materials, breaking the old tradition of depositing over conductors with this technique.

References

- [1] Y. J. Noori, S. Thomas, S. Ramadan, et al., IOP 2D Mater., 9 (2022) 15025
- [2] Y. J. Noori, S. Thomas, S. Ramadan, et al., ACS Appl. Mater. Interface, 12 (2020) 49786.
- [3] N. Abdelazim, Y. J. Noori, S. Thomas, et al., Wiley Adv. Electron. Mater., (2021) 2100419.
- [4] S. Thomas, V. Greenacre, et al., Chemical Communications, 57 (2021) 10194.

Figures

Figure 1: The lateral heterostructure of electrochemically deposited MoS2 and WSe2 as illustrated by an (a) SEM image (b) Optical microscope image and (c-f) EDX maps.

²Imperial College, London, UK

³University of Warwick, Coventry, UK