Synthesis of NbSe₂/Bilayer Nb-doped WSe₂ Heterostructure from Exfoliated WSe₂ Flakes

Minh Chien Nguyen

Van Tu Vu, Van Dam Do, and Woo Jong Yu Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

chiennguyen@g.skku.edu, tu.vuvan@skku.edu, and micco21@skku.edu

Abstract

Forming heterostructures of 2-dimensional (2D) metals/semiconductors (m/s) using chemical vapor deposition (CVD) has significant potential to effectively reduce contact resistance in electronic devices.^[1] However, semiconducting transition-metal dichalcogenides (TMD) layer in m/s heterostructures are currently restricted to monolayer despite the superior mobility and density of states in bilayer TMDs.^[2] Herein, we first synthesized NbSe₂/bilayer Nb-doped WSe₂ m/s heterostructure from exfoliated WSe₂ flakes. The exfoliated WSe₂ bulk crystals on Nb-coated substrate are heated to 950 °C under a flow of selenium vapor, and then the NbSe₂/bilayer Nb-doped WSe₂ heterostructures were formed. X-ray photoelectron spectroscopy, atomic force microscopy and transmission electron microscopy clearly clarified the number of Nb-doped WSe2 layers and heterostructure of NbSe₂/bilayer Nb-doped WSe₂. Electrical measurements reveal significantly improved mobility and on/off ratio compared to monolayer Nb-doped WSe₂. Moreover, the performance is further enhanced in NbSe₂/bilayer Nb-doped WSe₂ contacts due to a clean vertical staked interface. Additionally, we demonstrate high photovoltaic effect and fast response time in a photovoltaic device. These findings emphasize our growth method opens new avenues for synthesizing a wide range of metal-doped TMD heterostructures, fostering innovation in the field of 2D material-based electronic and optoelectronic devices.

References

Figures

Figure 1: (a) Schematic illustrating the CVD growth of NbSe₂/bi-Nb.WSe₂ heterostructure. (b) Transfer characteristics of Cr/m-Nb.WSe₂ (purple line), Cr/bi-Nb.WSe₂ (blue line), NbSe₂/bi-Nb.WSe₂ (red line) and Cr/NbSe₂ (black line) contact FETs. (c) Output characteristics under dark and light conditions for Cr/bi-Nb.WSe₂/Cr and Cr/bi-Nb.WSe₂/NbSe₂ devices.

^[1] Yuanyue Liu et al., Sci Adv, 2 (2016), e1600069

^[2] Liu, L., Li, T., Ma, L. et al., Nature, 605 (2022), 69-75