Efficient spin-to-charge conversion and charge transfer dynamics in graphene/WS₂ heterostructures at room temperature

Presenting Author: J. B. S. Mendes¹

Co-Authors: R. O. Cunha¹, Y.G. Basabe², D. G. Larrude³, M. Gamino⁴, E. N. Lima⁵, F. Crasto de Lima⁵, A. Fazzio⁵, A. Azevedo⁶, S. M. Rezende⁶

¹Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil ²Centro Interdisciplinar de Ciências da Natureza, Universidade Federal da Integração Latino-Americana, 85867-970 Foz do Iguaçu, Paraná, Brazil

³Escola de Engenharia, Universidade Presbiteriana Mackenzie, São Paulo 01302-907, Brazil ⁴Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, Rio Grande do Norte, Brazil

⁵Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil

⁶Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil

Contact@E-mail: Joaquim.mendes@ufv.br

Abstract

The use of graphene in spintronic devices depends, among other things, on its ability to convert a spin excitation into an electric charge signal, a phenomenon that requires a spinorbit coupling (SOC). We have already reported an investigations of the spin-to-charge current conversion in single-layer graphene deposited on a single crystal film of the ferrimagnetic insulator yttrium iron garnet (YIG-Y₃Fe₅O₁₂). ^[1,2] Here we report an investigation of the combination of WS2 flakes with a single-layer graphene for spin-to-charge current conversion. We report an investigation of the combination of WS₂ flakes with a graphene layer for spin-to-charge current conversion. The pure spin current was produced by the spin precession in microwave driven ferromagnetic resonance of pemalloy film (Py-Ni₈₁Fe₁₉) and injected into the WS₂/graphene heterostructure by the spin pumping process. The spin-tocharge current conversion that occurs in the heterostructure is attributed to Inverse spin Hall effects (ISHE) in WS₂ and inverse Rashba-Edelstein (IREE) at the interface of WS₂ flakes and the graphene film. The results show that the presence of WS₂ flakes improves the current conversion efficiency. Understanding how the interfacial charge transfer and spin-charge conversion process between layered TMDs materials and graphene occur is important for improving the optoelectronic and spintronic device performance. For this purpose, the electron dynamic delocalization and spin-charge conversion in the interface of graphene/WS₂ heterostructure was investigated combining the synchrotron-based core hole clock approach and spin pumping process. The results obtained from these methods were supported by density functional theory (DFT) calculations.

This research is supported by CNPq, CAPES, FAPEMIG - Rede 2D and Rede de Nanomagnetismo, and INCT of Spintronics and Advanced Magnetic Nanostructures (INCT-SpinNanoMag).

References

[1] J. B. S. Mendes et al. Phys. Rev. B 99, 214446 (2019).

[2] J. B. S. Mendes et al. Phys. Rev. Lett. 115, 226601 (2015).