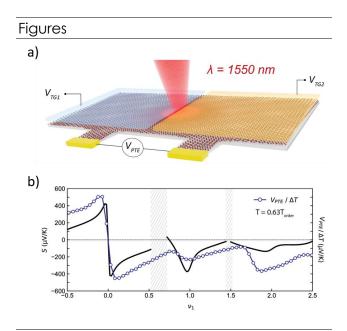
Heavy fermion physics in the thermoelectric transport of the MATBG flat bands

Rafael Lugue Merino

Dumitru Calugaru Haoyu Hu Paul Seifert B. Andrei Bernevig Dmitri K. Efetov

LMU, Munich, Germany Princeton University, NJ, USA DIPC, San Sebastián, Spain


rafael.luque@lmu.de

In the flat bands of magic angle twisted bilayer graphene (MATBG), a myriad of lowtemperature, many-body ground states emerae due to strong electronic interactions [1]. These varied around states (including superconductivity. or the Pomeranchuk effect). suggested the coexistence of itinerating carriers and localized moments within the flat bands. Thermodynamic studies also evidenced electron-hole strong asymmetry in MATBG[2].

Here, we study the thermoelectric transport in the flat bands, governed by the Seebeck coefficient. We leverage the extreme sensitivity of the Seebeck coefficient to electron-hole asymmetry to investigate the electronic spectrum of correlated states in MATBG. Our devices are optically excited *pn* junctions on high-quality MATBG samples. Our findings reveal strong asymmetry of the low energy bands at the correlated states which can be naturally attributed to the existence of incoherent heavy fermion bands [3]. We model our findings via the Topological Heavy Fermion model [4].

References

- [1] Balents L. et al, Nat. Phys. 16 (2020)
- [2] Zondiner, U. et al, Nature 582 (2020)
 [3] Lugue Merino, R. et al,
- arXiv:2402.11749 (2024) [4] Calugaru, D. et al,
- [4] Calugaru, D. ef al, arXiv:2402.14057 (2024)

Figure 1: a) Schematic representation of the (photo-)thermoelectronic study of magic-angle twisted bilayer graphene pn junctions. b) Sign-preserving thermoelectricity at T = 10 K across the correlated states (blue circles). The black lines correspondsto the Seebeck coefficient of the KIVC ground states within the THF model.