The evidence of dissipation dilution effect in low stress graphene nanoelectromechanical resonators

Ying Liu

Silin Guo, Yong Zhang, Peng Yang, Kehong Lv, Jing Qiu, Guanjun Liu College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; liuying@nudt.edu.cn

Abstract

The low quality factor at room temperature is the key bottleneck for graphene nanoelectromechanical resonator towards engineering applications[1]. The dissipation dilution theory has been demonstrated in highly stressed silicon-based resonators with high quality factor[2], which is also expected to be applicable to graphene[3]. In this work, we fabricated graphene resonators with outer phononic crystal shield by using the focus ion beam (FIB) etch process. The exfoliated Tri-layer graphene is characterized by Raman. The Resonance characteristics are carried out on a custom-built optical interferometry system at room temperature in vacuum. The devices exhibit reasonable low pre-stress in a range of 10MPa-40MPa [figure 2(b)] and reach Q value up to 769 even without clamp [figure 2(a)]. Meanwhile, the ratio of Q values of the first two vibration modes is close to 1 rather than 2.5, which indicates the unnegligible bending stiffness. According to the dissipation dilution model, the intrinsic mechanical quality factors [figure 2(c)] are extract by multiplied by the dissipation dilution factor extracted from the finite element models. The consistent values with small fluctuation in the range of 5 to 10 maybe more reasonable for graphene with higher surface dissipation compared to 69 for SiNx[4]. Our results may provide new evidences to extend the dissipation dilution effect into low stress graphene resonator.

References

[1] Xu, B.; Bachtold, A.; Feng, P. X. L.; Wang, Z. el. al. ACS Nano 2022, 16 (10), 15545-15585.

- [2] Beccari, A.; Engelsen, N. J.; Kippenberg, T. J. el. al. Nature Physics 2022, 18 (4), 436-441.
- [3] Descombin, Ayari, A.; Perisanu, S. el. al. Nano Letters 2019, 19 (3), 1534-1538.
- [4] Villanueva, L. G.; Schmid, S. Physical Review Letters 2014, 113 (22), 6.
- Figures

Graphene2024