Jae Hwan Jeong^{1§}

Yeonjoon Jung¹ Jang-Ung Park² Gwan-Hyoung Lee¹

¹ Department of Materials Science and Engineering, Seoul National University, Seoul, Korea ² Department of Materials Science and Engineering, Yonsei University, Seoul, Korea [§] Present address: Dpto. Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain

Jeong.jaehwan@uam.es

The study of Two-dimensional (2D) semiconducting materials, such as MoS₂, holds great promise for advanced electronic devices, for their unique and promising physical and electrical properties. However, chemical vapor deposition (CVD), which is a mandatory method for the synthesis of 2D materials in large quantities, exhibits lower-than-expected properties owing to numerous defects. Among those defects, grain boundary (GB) is a critical factor that affects the electrical and mechanical properties of synthesized MoS₂. Here I will present our research on the relationship between gate-tunable electrostatic properties and friction of GB in CVD-synthesized MoS₂ films using atomic force microscopy (AFM) [1]. We found that the electrostatic Coulomb interaction between the AFM tip and the carriers of MoS₂ plays a significant role in MoS₂ friction, especially at GB with different local band structures. The study highlights a strong correlation between electrostatic friction and localized band structure in MoS₂ GBs, providing a novel method for identifying and characterizing GBs of polycrystalline 2D materials, which is important for optimizing their properties for advanced electronic devices.

References

[1] Jae Hwan Jeong, Yeonjoon Jung, Jang-Ung Park, and Gwan-Hyoung Lee, Nano Letters, 23.7 (2023) 3085-3089

Figures

Figure 1: AFM friction image of MoS2 GB area