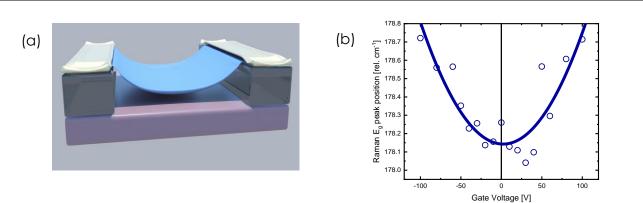
Strain engineering of freestanding PtSe₂ films: Investigation of electrical and optoelectronic properties

Stefan Heiserer

Natalie Galfe¹, Michael Loibl², Maximilian Wagner¹, Simon Schlosser¹, Silke Boche¹, Tanja Stimpel-Lindner¹, Josef Kiendl², George de Coster^{1,3}, Georg Duesberg¹, Paul Seifert¹

 ¹ Institute of Physics, Faculty of Electrical Engineering and Information Technology and SENS Research Centre, University of the Bundeswehr Munich, 85577 Neubiberg, Germany
² Institute for Mechanics and Structural Analysis, University of the Bundeswehr Munich, 85577 Neubiberg, Germany
³ DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States

Stefan.heiserer@unibw.de


Platinum diselenide (PtSe₂) is a two-dimensional noble-metal dichalcogenide that has received significant attention due to its exceptional electronic properties and its versatility for optoelectronic and chemical sensing devices.[1] The material exhibits a transition from semimetallic to semiconducting behaviour when thinned, opening an infrared bandgap.[2] Furthermore, the highly stable and robust PtSe₂ films exhibit strong piezoresistivity and show large thickness-dependent gauge factors making them a prime material for nanoelectromechanical systems (NEMS).[3]

In this study, we produced freestanding 2D material films and investigated their electrical and optoelectronic response under controlled strain. Bridges of polycrystalline PtSe₂ were fabricated via thermally assisted conversion of pre-defined platinum channels directly on Si/SiO₂ target substrates.[1] After depositing electrical contacts, a trench was under-etched beneath the PtSe₂ to create a freestanding 2D material film. The electrical and optoelectronic properties of the film were studied at different strains, which can be controlled by applying a gate voltage. Thereby, we elucidate structural changes within the polycrystalline 2D material film and provide a device platform for multiple applications.

References

- [1] Yim, C. et al., ACS nano (2016)
- [2] Ciarrocchi, A. et al., Nature comm. 9 (2018) 919
- [3] Wagner, S. et al., Nano Lett. 18 (2018) 3738

Figures

Figure 1: (a) Illustration of a freestanding PtSe₂ film under applied strain. (b) Shift of Raman peak position under various gate voltages.