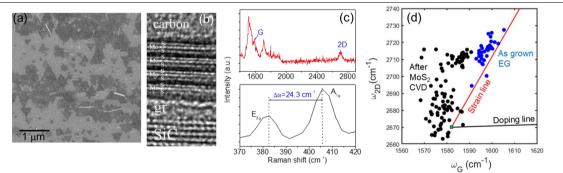
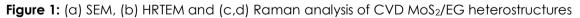
Towards large area MoS₂/graphene heterostructures on silicon carbide

F. Giannazzo^{1*,} S. E. Panasci¹, E. Schilirò¹, F. Roccaforte¹, S. Agnello^{2,3}, C. Mastropasqua⁴, A. Michon⁴, Y. Cordier⁴, A. Koos⁵, B. Pécz⁵
¹ CNR-IMM, Catania, Italy
² Department of Physics and Chemistry "E. Segrè", University of Palermo, Italy
³ AtenCenter, University of Palermo, Italy
⁴ Université Côte d'Azur, CNRS, CRHEA, Valbonne, France
⁵ HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science, Budapest, Hungary
filippo.giannazzo@imm.cnr.it

Recently, the expanding role of silicon carbide (SiC) in energy efficient electronics motivated a resurgence of interest in large area integration of 2D materials with SiC for novel devices [1,2,3]. In this work, MoS₂/graphene heterojunctions have been obtained by MoS₂ CVD onto epitaxial graphene (EG) on SiC(0001). A multiscale investigation by complementary structural, spectroscopic and electrical characterization techniques allowed to evaluate the MoS₂ covered fraction, thickness uniformity and epitaxial quality of MoS₂ on EG, providing insights on the growth mechanisms. MoS₂ domains preferentially nucleate along the SiC steps (Fig.1(a)) and exhibit a high degree of orientation, as confirmed by cross sectional HRTEM analyses (Fig.1(b)) allowing to resolve Mo and S sublayers. This ultimately results in a MoS₂ film with low density of grain boundaries. Raman analyses (Fig.1(c,d)) provided information of the evolution of EG strain after MoS₂ growth. Finally, nanoscale current-voltage measurements by C-AFM (Fig.2(a)) showed the rectification behavior at the MoS₂/EG heterojunction, providing an insight on the current injection mechanisms across this van der Waals interface.


This work was supported by the FlagERA JTC 2019 project ETMOS, and by Next- Generation EU funding through the MUR - PRIN2022 project "2DIntegratE" (2022RHRZN2).


References

[1] F. Giannazzo, et al., Mater. Sci. Semicond. Process 174 (2024) 108220.

[2] F. Giannazzo, et al. Adv. Mater. Interfaces 10 (2023) 2201502.

[3] F. Iacopi, A. C. Ferrari, Tailoring graphene for electronics beyond silicon, Nature 625 (2024) 34-35. Figures

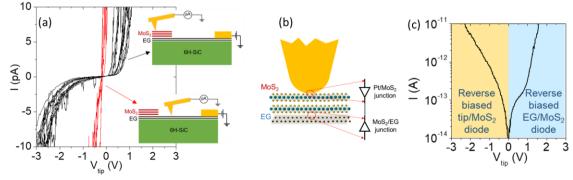


Figure 2: (a) I-V analyses and (b,c) description of current injection at MoS₂/EG junction.

Graphene2024