Improved performance of MOCVD-ML-MoS₂ FET by optimized PEALD Al₂O₃ passivation

Hleb Fiadziushkin^{1,*}

Şebnem İçtihadi¹, Amir Ghiami¹, Songyao Tang¹, Tianyuan Yu¹, Yibing Wang¹, Yingfang Ding¹, Ke Ran^{1,2}, Joachim Mayer^{1,2}, Michael Heuken^{1,3}, Holger Kalisch¹, Andrei Vescan¹
¹RWTH Aachen University, Sommerfeldstraße 18, 52074 Aachen, Germany
²Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
³AIXTRON SE, Dornkaulstraße 2, Herzogenrath, 52134, Germany
*fiadziushkin@cst.rwth-aachen.de

We report on an Al₂O₃ passivation process using plasma-enhanced atomic layer deposition (PEALD) on wafer-scale MoS₂ monolayers (ML) prepared by metal-organic chemical vapor deposition (MOCVD). The MoS₂ layers are fully coalesced across the 2-inch sapphire substrate with ~20% parasitic bilayer (BL) coverage and some vertically standing nanosheets (VSN) (**Fig. 1a,b**) [1]. Field-effect transistors (FET) (**Fig. 1c**) are fabricated and then passivated employing various Al₂O₃ PEALD (AI – TMAI, O – O₂ plasma) conditions (**Fig. 2c**). A novel in-situ 2-step process of low- and high-temperature (LT, HT) PEALD compatible with ML MoS₂ is established, improving on-currents up to 100x (**Fig. 2a**). The LT-step is crucial as it promotes uniform growth (**Fig. 1d**) and provides ML MoS₂ sufficient protection against O₂ plasma species (**Fig. 2a** LT+HT(*) and HT vs. Ref). With the 2-step process, we are able to maintain channel control [2], and achieve high on/off ratios of >10⁷ (**Fig. 2a,b**). The large refractive indices (**Fig. 2c**) of reference LT Al₂O₃ layers hint at the formation of a non-stochiometric AlO_x interfacial layer during the LT+HT process. Nevertheless, the improved FET performance indicates that this layer might be cured during the HT deposition step. We hypothesize that the 2-step Al₂O₃ passivation also acts as an n-type charge transfer doping layer for MoS₂.

References

[1] S. Tang et al., MRS Advances 7 (2022), 751–756

[2] A. Leonhardt et al., ACS Appl. Mater. Interfaces, 11, 45 (2019), 42697–42707

Figures

Figure 1: Top-view SEM (a) of as-grown ML MoS₂, showing ~20% BL growth. Raman spectroscopy (b) of as-grown, transferred and passivated ML MoS₂. Schematic of FET (c). Cross-section TEM (d) of the FET channel: ML MoS₂ and ~20 nm Al₂O₃ deposited with LT+HT* passivation process.

Figure 2: Transfer (a) and output (b) curves of FET passivated under different PEALD conditions (c). Sizes of all devices are $W_{ch} = 100 \mu m$, $L_{ch} = 1 \mu m$. Other parameters regarding single PEALD cycles are kept the same, e.g., TMAI soaking and O₂ plasma exposure times, etc.

Graphene2024