An Alkyne-Bridged Covalent-Organic Framework Featuring Interactive Pockets for Cooperative Bromine Capture

Ankita De

Sattwick Haldar,¹ Johannes Schmidt,² Saeed Amirjalayer,³ Fanny Reichmayr,¹ Nikolaj Lopatik,¹ Leonid Shupletsov,¹ Eike Brunner,¹ Inez Weidinger,¹ Andreas Schneemann¹

¹TU Dresden, Dresden, Germany ²TU Berlin, Berlin, Germany ³University of Münster, Münster, Germany <u>Ankita.de@tu-dresden.de</u>

Halogens like bromine and iodine pose a serious threat to the environment as they cause ozone layer depletion.^[1] Although iodine is beneficial to human health in small amounts, bromine is highly corrosive and volatile, thus making it toxic. ^[2] Bromine emissions are mainly due to its use in aerosols, flame retardants, pharmaceuticals or fine chemical production, reduction of mercury vapor emissions, and agriculture. ^[3] Moreover, bromine can coexist with iodine in an equilibrium product of IBr. ^[4] These problems connected to bromine call for a search for suitable materials to capture bromine^[5] selectively over iodine. Here, we propose a new Covalent Organic Framework (COF) featuring electron-rich sites to capture Bromine effectively (amongst the highest in porous reticular materials) and have conducted an in-detail study of the capture mechanism.

The backbone of the COF featured in this study consists of triple bonds, an electron-rich pyrene unit, and heteroatoms (N sites). These sites enhance the capture of Br_2 versus I_2 in static conditions with vapor as well as solution phase. Moreover, when the COF is exposed to a mixture of I₂ and Br₂, the λ_{max} shifts to that of I₂ in solution. As monitored by solution Raman spectroscopy, we observe the disappearance of the band corresponding to Br_2 and IBr from the solution after equilibration. To give some mechanistic insights into the capture, we see the disappearance of the Raman band corresponding to the triple bond after Br₂ capture. From XPS as well as computational studies, the participation of the electron-rich triple bond is evident for bromine capture. The participation of the triple bond forms a major difference owing to the higher orbital overlap due to the lower atomic size of Br₂ compared to I₂, thus leading to higher and selective bromine capture. This involvement of the triple bond can be classified as a cooperative physisorption as well as a chemisorption process, giving rise to a unique method for the capture of Br₂. The captured halogens can also be reversibly released and the material can be recycled with minimum loss in the overall capture capacity. This study thus gives material chemists a guide to targeted material design for the capture of environmentally benign chemical species.

References

- [1] Pratt, K. A.; Custard, K. D.; et al. Nature Geoscience (2013), 6 (5), 351–356.
- [2] Pang, J.; Yuan, S.; et al. Angew. Chem. Int. Ed. (2017), 56 (46), 14622–14626.
- [3] John. Kirk-Othmer Encyclopedia of Chemical Technology (2004) 4th ed [27 vols] Vol 5
- [4] Troy, R. C.; Kelley, M. D.; et al. Inorg. Chem. (1991), 30 (25), 4838–4845.
- [5] Tulchinsky, Y.; Hendon, C. H.; et al. J. Am. Chem. Soc. (2017), 139 (16), 5992–5997.

Figure

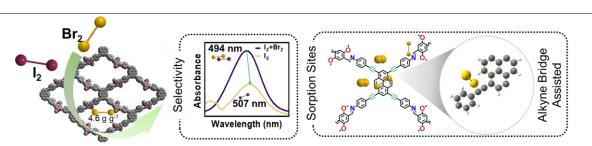


Figure 1: Scheme showing the selective capture of bromine in a strategically designed COF

Graphene2024