Physical Reservoirs Capable of Multi Time-scale Processing Implemented Using Direct-grown Bi₂O₂Se-based Memristors

Wonbae Ahn¹

Ayoung Ham², Jungyeop Oh¹, Seunghwan Seo², Kibum Kang^{2,3}, and Sung-Yool Choi^{1,3*} ¹School of Electrical Engineering, KAIST, Daejeon 34141, Republic of Korea ²Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea ³Graduate School of Semiconductor Technology, KAIST, Daejeon 34141, Republic of Korea solbaestar@kaist.ac.kr

Abstract

The implementation of an analog physical reservoir for sequence data processing reduces the complexity of neural networks [1]. However, the differences in data interval and decay time of the memristor make it difficult to universally use reservoir computing for various types of data. Therefore, it is necessary to develop a physical reservoir with a tunable decay time scale within a single device. Herein, we report memristors with programmable decay times using Bi₂O₂Se grown directly on AI electrodes. The SET and HOLD voltages of memristors show small standard deviations of 0.031 and 0.030 respectively. Interestingly, our volatile memristors exhibited an order-of-magnitude difference decay time when input pulses of 5 µs, 50 µs, and 500 µs width were applied. Also, the linear increase of Int (T: decay time) with temperature increasing shows that metallic filament lifetime is strongly affected by diffusion of Ag ions [2]. Finally, we analyzed output responses to four types of sequence inputs for each pulse width, and distinct conductance levels were obtained in the array level.

References

- [1] Zhong Y, et al., Nat. Electron., 5 (2022) 672
- [2] Ahn W, et al., Small, 19 (2023) 2300223

Figures

Figure 1: a) Schematic illustration of the device. b) I-V curves of the device c) Current increase for different pulse widths and intervals

Figure 2: Output responses of 36 devices to four types of sequence inputs with different pulse widths