Electrodeposition of TMDC 2D-materials on Graphene

Kees de Groot

Yasir Noori¹, Nema Abdelazim¹, Jiapei Zhang¹, Shibin Thomas¹, Victoria Greenacre¹,Sami Ramadan², Yisong Han³, Richard Beanland³, Norbert Klein², Gill Reid¹, Philip N Bartlett¹, ¹University of Southampton, UK ²Imperial College London, UK, ³University of Warwick, UK chdg@soton.ac.uk

The development of scalable techniques to make two-dimensional transition metal dichalcogenides (2D-TMDC) material heterostructures is a major obstacle that needs to be overcome before these materials can be implemented in device technologies. Electrodeposition is an industrially compatible deposition technique that offers unique advantages in scaling 2D heterostructures. In this work, we demonstrate both the ability of electrodeposition the grow atomic layers of MoS₂ and WS₂ on patterned graphene electrodes as well as lateral growth of said 2D materials over an insulator resulting in promising electrical characteristics for photodetectors and transistors. This paves the way towards future possibilities such as electrodepositing different TMDCs to form lateral heterostructures of 2D materials and graphene, such as creating novel p-n-p or Schottky junction in a single electrodeposition experiment [1-4].

References

- [1] Y. J. Noori, S. Thomas, S. Ramadan, et al., IOP 2D Mater., 9 (2022) 15025
- [2] N. Abdelazim, Y. J. Noori, S. Thomas, et al., Wiley Adv. Electron. Mater., (2021) 2100419.
- [3] Y. J. Noori, S. Thomas, S. Ramadan, et al., ACS Appl. Mater. Interface, 12 (2020) 49786.
- [4] S. Thomas, DE Smith, V. Greenacre, et al., J. Electrochem. Soc., 167 (2020) 106511.

Figures

Figure 2: a) Raman spectra of MoS₂ with the separation between the A_{1g} and E¹_{2g} peaks reducing with deposition thickness. (b) Raman spectra of graphene showing the 2D peaks remain after annealing. (c) photo-illumination cycles showing induced photocurrent with a switching laser source