Ferroelectric domain writing in misfit layer compound (PbS$)_{1.18} \mathrm{VS}_{2}$ using electron-beam lithography

Jiří Volný ${ }^{1}$
Kateřina Tetalová ${ }^{1}$, Klára Uhlî̃ová ${ }^{1}$, Cinthia Antunes Corrêa ${ }^{1,2}$, and Tim Verhagen ${ }^{1,2}$
${ }^{1}$ Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16, Prague 2, Czech Republic
${ }^{2}$ FZU-Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, Praha 8, CZ-18 221, Czech Republic
volny@mag.mff.cz

Sliding (moiré) ferroelectricity exists only in 2D materials where the out-of-plane polarization is switched by in-plane interlayer sliding and thus breaking the inversion symmetry [1]. So far, sliding ferroelectrics have been mostly observed in artificially created van der Waals multilayers, where manually exfoliated 2D layers are stacked on top of each other with a small twist angle θ between the individual layers [2-4].

Misfit layer compounds (MLC) are naturally grown materials that consists of alternating stacking of two different 2D materials forming an ordered superstructure. We focus on MLC (PbS ${ }_{1.18} \mathrm{VS}_{2}$, formed by alternating layers of transition metal dichalcogenide VS_{2} and transition metal monochalcogenide PbS. Bulk (PbS $)_{1.18} \mathrm{VS}_{2}$ is stable at ambient conditions, shows semiconducting behaviour and exhibits sliding ferroelectric behaviour at room temperature. Ferroelectric domains with sizes varying between tens of nm up to tens of $\mu \mathrm{m}$ were observed using scanning electron microscopy (SEM) and scanning probe microscopy (SPM). We show that using electron-beam lithography, ferroelectric domains of arbitrary shape can be written. The written domains are thermodynamically stable and can be imaged using both SEM and SPM.

References

[1] L. Li and M. Wu, ACS Nano 11, 6382 (2018)
[2] K. Yasuda, et al, Science 372, 1458 (2021)
[3] Z. Zheng et al, Nature 588, 7836 (2020)
[4] A. Weston et al., Nature Nanotechnology 17, 390 (2022)

