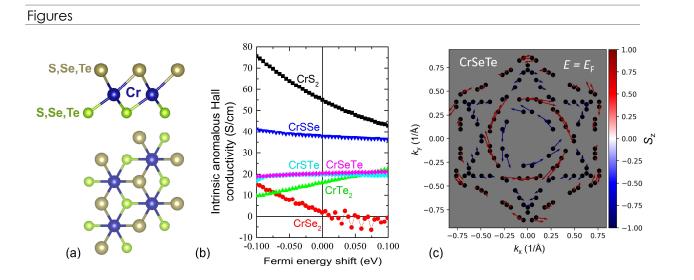
Spin transport in CrXY monolayers: multiscale computational study

Libor Vojáček¹

José H. Garcia², Joaquín Medina Dueñas², Fatima Ibrahim¹, Stephan Roche^{2,5}, Jing Li³, and Mairbek Chshiev^{1,4}


¹Univ. Grenoble Alpes, CEA, CNRS, SPINTEC, 38054 Grenoble, France ²ICN2, CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain ³Univ. Grenoble Alpes, CEA, Leti, F-38054, Grenoble, France ⁴Institut Universitaire de France, Paris 75231, France ⁵ICREA–Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

Libor.Vojacek@cea.fr

Two-dimensional magnetic materials show a high potential for spintronic devices [1] thanks to intriguing phenomena at their interfaces. Their experimental investigation, while being actively performed, poses many challenges and numerical simulations can be of great help by pin-pointing high-gain materials and guiding the experimental research [2]. In this study we use a complete set of computational techniques to assess the suitability of CrXY [X, Y \in {S, Se, Te}] monolayers for spintronics, focusing on spin-momentum locking, highly relevant for spin manipulation by an electric current. We start from *ab initio* calculations and create tight-binding models [3] further used to compute the exchange parameters, Curie temperature and anomalous Hall conductivity. We find spin-momentum locking of complex forms which is shown to come from higher-order terms in the in-plane momentum expansion of the spin-orbit Hamiltonian [4]. Along with the calculated structural properties and magnetic anisotropy, this allows us to draw important conclusions about the possible use of CrXY monolayers in spintronic devices.

References

- [1] B. Dieny et al., Nature Electronics 3 (2020) 446
- [2] Q. H. Wang et al., ACS Nano 16 (2020) 6960
- [3] A. A. Mostofi et al., Computer Physics Communications 185 (2014) 2309
- [4] S. Vajna et al., Physical Review B 85 (2012) 075404

Figure 1: Ab initio calculations of CrXY [X, $Y \in \{S, Se, Te\}$] monolayers in the 1T phase. (a) Crystal structure of the monolayer 1T phase. (b) Calculated intrinsic anomalous Hall conductivity as a function of Fermi energy shift for the 6 materials. (c) Spin texture at the Fermi surface of a monolayer CrSeTe as a function of the in-plane wave vectors. The asymmetrical structure leads to an effective out-of-plane electric field and resulting Rashba-like spin-momentum locking.

Graphene2023