High-performance monolayer MoS₂ field-effect transistors and photodetectors on SiO₂ gate dielectric passivated with cyclic olefin copolymer

Andrey Turchanin¹

Emad Najafidehaghani¹, Sirri Batuhan Kalkan², Ziyang Gan¹, Jan Drewniok², Michael Lichtenegger², Uwe Hübner³, Alexander S. Urban², Antony George¹, Bert Nickel² ¹Friedrich Schiller University Jena, 07743 Jena, Germany ²Ludwig-Maximilians-Universität, 80539 München, Germany ³Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany andrey.turchanin@uni-jena.de

Trap states of the semiconductor/gate dielectric interface give rise to a pronounced subthreshold behavior in field-effect transistors (FETs) diminishing and masking intrinsic properties of 2D materials. To reduce the well-known detrimental effect of SiO₂ surface traps, this work spin-coated an ultrathin (\approx 5 nm) cyclic olefin copolymer (COC) layer onto the oxide and this hydrophobic layer acts as a surface passivator. The chemical resistance of COC allows to fabricate monolayer MoS₂ FETs on SiO₂ by standard cleanroom processes. This way, the interface trap density is lowered and stabilized almost fivefold, to around 5 × 10¹¹ cm⁻² eV⁻¹, which enables low-voltage FETs even on 300 nm thick SiO₂. In addition to this superior electrical performance, the photoresponsivity of the MoS₂ devices on passivated oxide is also enhanced by four orders of magnitude compared to nonpassivated MoS₂ FETs. Under these conditions, negative photoconductivity and a photoresponsivity of 3 × 10⁷ A W⁻¹ is observed which is a new highest value for MoS₂. These findings indicate that the ultrathin COC passivation of the gate dielectric enables to probe exciting properties of the atomically thin 2D semiconductor, rather than interface trap dominated effects.

References

[1] S.B. Kalkan, E. Najafidehaghani et al., Adv. Optical Mater. 11 (2023) 2201653.

Figures

