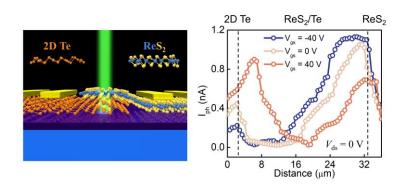
Thi Uyen Tran¹

Jaeuk Bahng¹, Xuan Dang Dang², Suah Oh², Hai Phuong Duong², Seung Su Kang², Hyang Mi Yu², Wonkil Sakong², Minjeong Kim², Hyung-seok Choi³, Jaeyoon Baik³, Mun Seok Jeong^{4,*}, and Seong Chu Lim^{1,2,*}

¹Department of Smart Fab. Technology, Sungkyunkwan University, Gyeonggi 16419, South Korea ²Department of Energy Science, Sungkyunkwan University, Gyeonggi 16419, South Korea ³Beamline Research Division, Pohang Accelerator Laboratory, Pohang 37674, South Korea ⁴Department of Physics and Department of Energy Engineering, Hanyang University, Seoul 04763, South Korea


tranthiuyen227@gmail.com

Semiconducting layered materials (SLMs) have attracted much attention due to their versatile potential applications in photodetectors, phototransistors, and light-emitting diodes [1,2]. The devices based on these materials can be far more adaptable when they are hybridized in heterostructures [3,4]. Here, we report a heterostructure based on n-type rhenium disulfide (ReS₂) and p-type tellurene (2D Te). The light response of the heterostructure device was elucidated by the magnitude, phase (flow direction), and position of the light-induced current. Diverse photocurrent generation mechanisms were discovered at the interface of ReS₂-2D Te hybrid structure, including the photovoltaic effect (PV), photothermoelectric effect (PTE), and the hybrid of PV and PTE, rather than the expected PV only, which has been unprecedented for LSMs-based phototransistors so far. Furthermore, adaptive photocurrent can be achieved by controlling back-gate bias. These results are expected to contribute to the fundamental understanding of photocurrent generation in the heterojunction and develop new concepts of optical sensors with a designed detection mechanism.

References

- [1] N.R. Glavin, et al, Adv. Mater., 32 (2020), 1904302
- [2] J. Jiang, et al, Adv. Electron. Mater., 7 (2021), 2001125
- [3] N.T. Duong, et al, ACS Nano, 13 (2019), 4478
- [4] T.U. Tran, et al, Appl. Mater. Today, 26 (2022),101285

Figure

Figure 1: Adaptive photocurrent generation in ReS₂-2D Te Heterostructure at different back-gate biases.