Signatures of Proximity-Induced Magnetism and Spin-orbit Coupling in Graphene/ $V_xW_{1-x}Se_2$ Heterostructure

Josef Světlík^{1,2}

L. Camosi¹, W. Savero Torres¹, L. A. Benítez^{1,2}, Ch. Stefani^{1,2}, I. Verzhbitskiy³, I. Fernández Aguirre^{1,2}, J. F. Sierra¹, G. Eda³, S. O. Valenzuela^{1,4}

¹Institut Català de Nanociència i Nanotecnologia, UAB Campus, Bellaterra (Barcelona), Spain ²Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain, ⁵Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain ³National University of Singapore, 21 Lower Kent Ridge Rd, 119077 Singapore ⁴Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain Josef.svetlik@icn2.cat

Graphene has shown great potential as an elementary building block of future spintronic devices. Its high carrier mobility and intrinsically low spin-orbit coupling (SOC) lead to long spin diffusion length, making graphene an ideal spin-channel material. Moreover, its atomic thickness promotes proximity-induced effects that provide new ways to control spin transport [1]. For instance, graphene in contact with semiconducting transition metal dichalcogenides (e. g. WSe₂) develops a proximity SOC and a complex spin texture. Such a modification results in anisotropic spin relaxation [2] and allows to efficiently interconvert charge and spin-currents [1,3,4]. Alternatively, interfacing graphene with magnetic materials induces exchange splitting [5], possibly allowing gate-tuneable spin-polarized currents. Doping TMDCs with magnetic atoms has been reported to induce long-range magnetism up to room temperature. For example, V_xW_{1-x}Se₂ shows (anti-)ferromagnetic behaviour depending on the doping level [6]. By performing nonlocal spin precession measurements, we observe signatures of magnetism together with proximity-induced SOC in graphene/V_xW_{1-x}Se₂ heterostructure and investigate the interplay of these two effects.

J S acknowledges funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 754558.

References

- [1] Sierra J. F., et al., Nature Nanotechnology, 8 (2021), 856–868.
- [2] Benítez, L. A., et al., Nature Materials, **3** (2018), 303–308.
- [3] Safeer, C.K., et al., Nano Letters, 2 (2019), 1074–1082.
- [4] L. A. Benítez et al., Nature Materials, 2 (2020), 170-175.
- [5] Ghiasi, T.S. et al., Nature Nanotechnology, 7 (2021), 788–794.
- [6] Pham, Y.T.H. et al., Advanced Materials, **45** (2020), 2003607.

Figure 1: Schematic of lateral spin valve device composed of graphene (Gr)/V_xW_{1-x}Se₂ heterostructure and spin-sensitive ferromagnetic (Co) electrodes and non-magnetic (Pd) electrodes on SiO₂/Si substrate allowing global electrostatic gating.

Graphene2023

Figures