Graphene ribbon self-assembly in the presence of self-assembled stripe absorbates

Pierce Sinnott

Majid Fazeli, Graham L. W. Cross Trinity College Dublin, College Green, Dublin 2, Ireland. Yuan Li, Danny Sanchez, Robert Carpick University of Pennsylvania, Philadelphia, PA 19104, USA. psinnott@tcd.ie

Abstract: Adhered graphene strips anchored to a host sheet by a pleat-like fold can selfassemble in ambient conditions into long ribbons micrometers in size through combined processes of self-tearing, substrate peeling and ultra-low friction sliding [1], a process we refer to as "auto-kirigami". Nominally enabled by low friction of structural superlubricity expected for incommensurate atomic lattice contacts [2], we report evidence here that a ubiquitous stripe-like structure previously observed on graphene surfaces [3] remains within the interface during sliding of an auto-kirigami ribbon and its host sheet. This structure consists of an adsorbate layer of alkane chains which forms within 4-5 days of exposure of pristine surfaces to air [4] and is associated with friction force microscopy domains on graphene surfaces [5]. Atomic Force Microscopy (AFM) PeakForce Quantitative Nanomechanical Mapping was used to characterise self-assembled pleats, revealing the presence of the ordered adsorbate structure on all exposed surfaces. That pleat self-assembly was not supressed by the presence of stripes indicates that these adsorbates do not appreciably degrade low friction superlubricity. Rotating the self-assembled ribbons with the AFM tip revealed that the stripeformation adsorbates stably exist within graphene-graphene interfaces, in disagreement with claims that attractive vdW forces squeeze out contaminants from within interfaces [6].

References

- [1] Annett, J. and Cross, G., Nature, 7611 (2016) 271-275
- [2] Berman, D et al., ACS Nano, 3 (2018) 2122-2137
- [3] Wastl, D. et al., ACS Nano, 11 (2013) 10032-10037
- [4] Pálinkás, A. et al., Nature Communications, 1 (2022) 6770
- [5] Gallagher, P. et al., Nature Communications, 1 (2016) 10745
- [6] Geim, A. K. and Grigorieva, I. V., Nature, 7459 (2013), 419-425.

Figures

Figure 2: AFM topography image of pleat fold within 180 minutes of AFM manipulation resulting in further folding of a corner of pleat. Self-assembled stripe adsorbates are observed on all graphene surfaces including areas newly exposed by micromanipulation. Inset top-right: zoom of area highlighted in red in main image