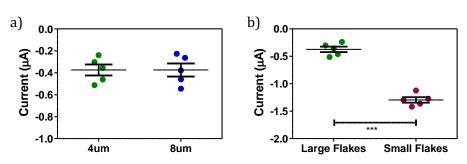
Transparent and flexible $Ti_3C_2T_x$ MXene electrochemical sensors for H_2O_2

Natalia Noriega

Marcus K. Dymond¹, Joseph Lacey³, Susan Sandeman¹, Yury Gogotsi², and Bhavik Anil Patel¹ ¹ School of Applied Sciences, University of Brighton, Brighton, UK ² A.J. Drexel Nanomaterial Institute, Drexel University, Philadelphia, USA ³ Rayner Intraocular Lenses Limited, The Ridley Innovation Centre, Worthing, UK M.NoriegaPedraza@brighton.ac.uk


MXenes are a family of 2D transition metal carbides and nitrides with unique properties that make them attractive for a wide range of applications [1]. Among these, $Ti_3C_2T_x$ is notable for its high conductivity and has been shown to improve the sensitivity towards several analytes, including dopamine, glucose and urea when combined with other electroactive materials within a sensor [2]. In this study, we developed transparent and flexible pristine $Ti_3C_2T_x$ electrodes for the detection of H_2O_2 . Electrode optimisation was initially performed using vacuum-filtered films to allow for precise control of electrode parameters. Probe sonication (20 min, amplitude of 50%, 8:2 sec ON:OFF) was performed in as-synthesized MXene to reduce the size of flakes and study their impact on electrode performance. Thickness was also varied (4 and 8 μ m) by increasing the amount of MXene filtered. Thin Ti₃C₂T_x films were deposited onto hydrogels via spray-coating to assess their performance as transparent electrodes and investigate their electrochemical activity during mechanical bending. UV-vis spectroscopy was used to determine light transmittance of different deposition times of $Ti_3C_2T_x$ colloidal solution. Amperometric responses (-650 mV vs Ag | AgCl) to 1 mM H₂O₂ in 0.1 M PBS were recorded as the assessment of this electrochemical study. Results indicate that the sensitivity towards H₂O₂ is independent of electrode thickness (Figure 1a). Additionally, reducing the flake size from >1000 µm to 260 nm significantly increased the signal response to H_2O_2 (Figure 1b). The optimized $Ti_3C_2T_x$ electrode exhibited a linear response towards H_2O_2 concentrations in the range of 20 μ M to 500 μ M with good electrode stability, reproducibility and selectivity. Successful determination of H₂O₂ concentrations using flexible and transparent Ti₃C₂T_x-coated hydrogels demonstrates the application of the unique combination of MXene properties in electrochemical sensing. Overall, our findings demonstrate the potential of pristine Ti₃C₂T_x for the development of electrochemical sensors for the detection of H_2O_2 , which has important implications for various fields, including biosensing, environmental monitoring, and clinical diagnostics.

References

[1] X. Li et al., Nat. Rev. Chem., 6 (2022) 389-404

[2] K. Kalambate et al., Trends Anal. Chem., 120 (2019) 115643

Figures

Figure 1: Impact of pristine $Ti_3C_2T_x$ electrode a) thickness and b) flake size on amperometric response to 1 mM of H_2O_2 in 0.1 M phosphate buffer saline (PBS) at -650 mV vs Ag | AgCl