Md Noor-A-Alam

Michael Nolan Tyndall National Institute, Lee Maltings, Dyke Parade, University College Cork, T12R5CP Cork, Ireland. mda.alam@tyndall.ie; michael.nolan@tyndall.ie

Piezoelectric materials convert mechanical energy to electrical energy, and vice versa. A wide range of electromechanical devices relies on piezoelectric-based energy conversion. Being intrinsically nano-size, flexible two-dimensional (2D) piezoelectric materials can miniaturize these electromechanical devices e.g. nanoscale sensors, energy harvesters, and actuators. However, a large piezo-response is desired for any practical applications. Recently, based on Density Functional Theory (DFT) calculations, we have predicted that ferroelectric/multiferroelectric MOX₂ (M=Ti, V and X = F, Cl, Br) monolayers possess large inplane stress (e11) and strain (d11) piezoelectric coefficients[1]. For example, TiOBr₂ monolayer has approximately one order of magnitude larger in-plane piezo-response ($e_{11} = 28.793 \times 10^{-10}$ C/m and $d_{11} = 37.758 \text{ pm/V}$) than the widely studied piezoelectric 1H-MoS₂ monolayer. Furthermore, MOX₂ monolayers exhibit large d_{11} coefficient ranging from 29.028 pm/V to 37.758 pm/V, significantly higher than the d_{11} or d_{33} of traditional 3D piezoelectrics such as w-AIN ($d_{33} = 5.1 \text{ pm/V}$) and a-quartz ($d_{11} = 2.3 \text{ pm/V}$)[1]. MOX₂ monolayers possess a large d_{11} because of their low in-plane elastic constants and large e11. Large Born effective charges (Z_{i}) and atomic displacement in response to an applied strain ensure a large e_{11} . Note that multifunctional spintronic devices can utilize coupling between piezoelectricity and magnetism in 2D materials. However, piezoelectricity requires a non-centrosymmetric structure with an electronic band gap, whereas magnetism demands broken time-reversal symmetry. Most of the well-known 2D piezoelectric materials, e.g., 1H-MoS₂ monolayer, are not magnetic. Being intrinsically magnetic, semiconducting 1H-LaBr₂, 1H-VS₂ and VOX₂ monolayers can combine magnetism and piezoelectricity. We show the possibility of opening a new way of controlling piezoelectricity by changing the magnetic order such as changing antiferromagnetic to ferromagnetic, or vice versa. For example, a change in magnetic order can enhance (reduce) the piezo-response of 1H-LaBr₂ (1H-VS₂)[2].

References

[1] M. Noor-A-Alam and M. Nolan, ACS Appl. Electron. Mater., 4(2022), 850–855
[2] M. Noor-A-Alam and M. Nolan, Nanoscale, 14(2022), 11676-11683