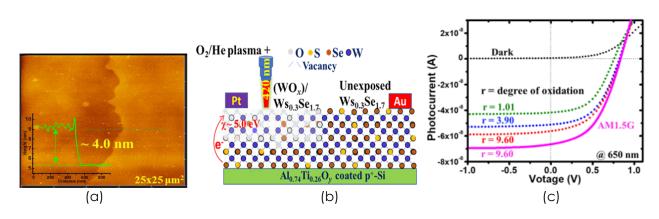
Few-Layer MoS_2 on AIN and AITiO/p⁺-Si for Energy Device Applications

Abdul Kuddus¹


Rong Kaipeng², Hajime Shirai³, and Shinichiro Mouri^{1,2} ¹Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga 525-8577, Japan ²Graduate School of Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan ³Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan Kuddus4910@gmail.com

Transition-metal dichalcogenides (TMDCs) van der Waals (VdW) layered materials and their alloys are significant potential in the area of transistors, light-emitting diodes, photodetectors, and energy devices. Especially, MoS₂ and WSe₂ are naturally *n*- and *p*-type TMDCs, respectively with bandgap E_g in the range of 2.1–1.2 eV and absorption coefficient a of ~10⁵ cm⁻² exhibiting huge potential for advanced nanoscale optoelectronic and photovoltaic devices. However, the choice of the substrate plays a crucial role in the growth of uniform large-area film as well as scalable, defect-free, high-performance devices fabrication. Aluminum nitride (AIN) has a high E_g of approximately 6.24 eV, the thermal conductivity of 300 W/m-K, and a dielectric constant ε of 4.7 with the least lattice mismatch of ~1.6% (with MoS₂), whereas mist CVD AlTiO has high E_{g} of 5.12 eV and dielectric constant ε of 13.8 with the strong hydrophilic surface is found as promising substrates for the growth of large scale TMDCs [1,2]. Here, we report the growth of the few-layer large-scale MoS_2 and $WS_{2x}Se_x$ films on the AIN and AITiO wafers by chemical vapor deposition (CVD) and mist-CVD. Further, we demonstrate the applications of MoS₂/AIN and WS_{2-x}Se_x/AITiO/p⁺-Si structures as energy Devices. The photocurrent current of I_{ph} of 7×10⁻⁸ A with a responsivity of ~1×10⁵ AW⁻¹ was obtained in visible light at blue and red wavelengths in a WS_{0.3}Se_{1.7} photodetector (Figure 1). Further, the PCE of $3.1 \times 10-3$ with I_{ph} of 3×10^{-6} A/cm² with V_{OC} of 0.84 V and FF of 0.57 was achieved in WS_{0.3}Se_{1.7}-based in-plane p^+ -n solar cells fabricated on a high- κ mist CVD-AlTiO/p⁺-Si [4]. We will demonstrate the improved performance of few-layer mm-scale MoS_2/AIN , and $WS_{2-x}Se_x/AITiO/p^+-Si$ structures photodetector and solar cell devices.

References

- [1] H. Yue et al., ACS Nano 11, 12, (2017) 12001–12007.
- [2] A. Kuddus et al., Semicond. Sci. Technol. 37, (2022) 095020.
- [3] A. Rajib et al., J. Appl. Phys. 131, (2022)105301.
- [4] A. Kuddus et al., ACS Appl. Electron. Mater. February, (2023).

Figures

Figure 1: (a) AFM of few-layer $WS_{2-x}Se_x$ film; (b)schematic of $WS_{2-x}Se_x$ /AITiO in-plane p^+-n junction formed by plasma layer exposure; (c) *I-V* characteristics of devices at different degrees of oxidation.