V. O. Khaustov ${ }^{1,2}$
M. Ochapski1,4, J. Köster³, M. J. Mohn³, D. Convertino', C. Tossil,4, Z. M. Gebeyehul,4, N. Mishral,4, U. Kaiser3, S. Fortil, C. Colettil,4
1. Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, I-56 127 Pisa, Italy.
2. NEST, Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy.
3. Ulm University, Central Facility for Electron Microscopy, Materials Science Electron Microscopy, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
4. Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
vladislav.khaustov@sns.it

Two dimensional (2D) molybdenum ditelluride (MoTe_{2}) is known to exist in two structural polymorphs: semiconductive (H) and semimetallic (T^{\prime}), with extremely low ground state energy difference ($30 \mathrm{meV} / \mathrm{f} . \mathrm{u}$.). $\mathrm{H}-\mathrm{MoTe}_{2}$ is a semiconductor with an optical band gap of 1 eV [1], while T'-MoTe 2 is a semimetal, which transforms into Weyl semimetal (Td) upon cooling [2]. Such properties make MoTe_{2} an interesting material for phase-change devices. Achieving controllable and reversible phase transformation between these two phases shall impact the development of MoTe_{2}-based electronic devices. In this work, we show how by using mono- and few-layer T'-MoTe2-based heterostructures encapsulated with CVD grown graphene, the $\mathrm{T}^{\prime} / \mathrm{H}$ to 2 H energy barrier can be effectively controlled, which is appealing to devise approaches for energy barrier reduction and phase stabilization. Experimental studies are made possible by our newly developed encapsulation method [3]. We demonstrate that CVD bilayer $1 \mathrm{~T}^{\prime} / 1 \mathrm{H}\left(1 \mathrm{H} / 1 \mathrm{~T}^{\prime}\right)$ either monolithic or synthetic can convert to 2 H at about $600^{\circ} \mathrm{C}$, a lower temperature than the $800^{\circ} \mathrm{C}$ required for $\mathrm{MoTe}_{2} 1 \mathrm{~T} / 1 \mathrm{H}$ phase transition when the material is encapsulated with CVD graphene. Also, we observe a $1 \mathrm{~T}^{\prime}$ to $1 \mathrm{H}-\mathrm{MoTe}_{2}$ phase transition at $750^{\circ} \mathrm{C}$ in a vertical $\mathrm{MoTe}_{2} / \mathrm{WS}_{2} /$ graphene VdW heterostructure. We propose an effective quantitative approach for estimating the experimental kinetic energy barrier between $1 \mathrm{H} / 1 \mathrm{~T}$ ' and 2 H phases, which agrees well with theoretical simulations. Furthermore, we report that upon annealing of $2 \mathrm{H}-\mathrm{MoTe}_{2}$ above $800^{\circ} \mathrm{C}$, we observe the formation of continuous Mo6Te. This temperature is higher than the critical temperature of $400{ }^{\circ} \mathrm{C}$ reported for non-encapsulated MoTe_{2} previously [4], and further suggests that adopting CVD grown graphene as an encapsulant can offer interesting prospects for phase control and phase-change device engineering. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement 881603. We acknowledge that the research activity herein was carried out using the IIT HPC infrastructure.

References

[1] Ruppert, C., et al. Nano Lett. 14.11 (2014): 6231-6236.
[2] Sun, Y., et al. Physical Review B 92.16 (2015): 161107.
[3] Pace, S., et al. ACS nano 15.3 (2021): 4213-4225.
[4] Zhu, H., et al. ACS nano 11.11 (2017): 11005-11014.

Figures

Figure 1: Schematics of the observed polymorphism

