Wien effect and photo-accelerated interfacial water dissociation across proton permeable graphene electrodes

Eoin Griffin

Junhao Cai
University of Manchester, Oxford Road, Manchester, United Kingdom
eoin.griffin@manchester.ac.uk
The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about $10^{7} \mathrm{~V} \mathrm{~m}^{-1}$. The observation of the Wien effect for the common case of water dissociation has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above $10^{8} \mathrm{~V} \mathrm{~m} \mathrm{~m}^{-1}$. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. The use of graphene as a membrane allows for measuring the proton currents arising exclusively from the dissociation of interfacial water. Illumination of the graphene under visible light produced an order-of-magnitude acceleration of the interfacial water dissociation reaction. The found photo effect is attributed to the combination of graphene's perfect selectivity with respect to protons, which prevents proton-hydroxide recombination, and to proton transport acceleration by the Wien effect. Our findings provide fundamental insights into ion dynamics near atomically thin protonselective interfaces.
References
[1] J. Cai, E. Griffin. et al, Nat Commun, 13 (2022) 5776
[2] J. Cai, E. Griffin. et al, Nano Lett, 22 (2022) 9566-9570
Figures

Figure 1: Proton conductivity through graphene electrode where n is the carrier density. Bottom x axis, is Electric field strength on graphene electrode. Solid curve, best fit of Onsager model to data. Dotted curves, Onsager model for different dielectric constant.

Figure 2: Faradaic efficiency measurements. Hydrogen and oxygen fluxes as a function of I under dark and bright conditions.

