Near-field radiative heat transfer of hBN-encapsulated Graphene Field Effect Transistors

Rémi Bretel¹

Loubnan Abou-Hamdan², Aurélien Schmitt¹, Sylvio Rossetti², Takashi Taniguchi³, Kenji Watanabe³, Michael Rosticher¹, Gwendal Feve¹, Jean-Marc Berroir¹, Christophe Voisin¹, Bernard Plaçais¹, Patrick Bouchon², Yannick De Wilde², and Emmanuel Baudin¹ ¹Laboratoire de Physique de l'ENS, Paris, France ²Institut Langevin, ESPCI, Paris, France ³National Institute for Materials Science, Tsukuba, Japan remi.bretel@phys.ens.fr

Heat management is critical for the performance of most modern electronic devices. The case of Van der Waals materials is no exception, but thanks to their anisotropic layered structure, most of them host collective bulk excitations, called hyperbolic phonon polaritons (HPhP), which are efficient radiative heat carriers. [1,2]

In this talk, I will present a direct observation of the out-of-plane heat transfer in a vertical SiO_2 -hBN-graphene-hBN heterostructure. The out-of-plane heat transfer is deduced from the steady-state temperature of the hot 285nm-thin SiO_2 layer in contact with the bottom hexagonal Boron Nitride, when the graphene transistor is operated under a large bias. This temperature is deduced from the characteristic incandescent peaked emission of SiO_2 in the middle-infrared. Using this technique, we show that out-of-plane heat transfer through hBN is triggered by interband tunnelling in graphene at large bias [2], and we quantify the amplitude of this effect. [3]

References

- [1] S. Biehs, et al, Phys. Rev. Lett. 109, 104301 (2012)
- [2] W. Yang, et al, Nat. Nanotech. 13, 47 (2018)
- [3] L. Abou-Hamdan et al, in preparation (2023)

Figures

Figure 1: Depiction of the out-of-plane heat transfer in a high-mobility graphene field-effect transistor with an SiO₂ back-gate. The subsequent mid-IR emission is represented by a red wavy arrow. a) MIR spectral radiance of the transistor for an applied electric field $E = 0.77 V/\mu m$ (Vg = 0 V), the blue-shaded region encloses the Reststrahlen band of SiO₂. b) Out-of-plane dissipated power as a function of electrical bias and gating, deduced from the SiO₂-temperature increase.

Graphene2023