Holistic approach to scalable 2D material processing from optimized CVD graphene catalysts to dry-transfer

Zachary C. M. Winter¹

Oliver J. Burton², Bernd Beschoten¹, Christoph Stampfer¹, Stephan Hofmann² ⁽¹⁾ 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany ⁽²⁾ Department of Engineering, University of Cambridge, Cambridge CB3 OFA, United Kingdom zachary.winter@rwth-aachen.de

The reliable and complete transfer of CVD-grown 2D materials into van der Waals heterostructures remains a bottleneck in both the fabrication of high quality devices (see e.g. [1]) and the device reproducibility. Here, we utilize large-scale data acquisition and correlative processing techniques to allow a holistic route through the copper-oxide-graphene growth and transfer parameter space. We identify a crystallographic Cu orientation that allows the growth of epitaxially aligned CVD graphene with a high propensity to delamination and reproduce it over larger areas utilizing recently developed single-crystal catalyst production methods [2]. We demonstrate that this CVD graphene can be dry transferred with high efficiency (>95%) and encapsulated by hexagonal boron nitride to yield room temperature carrier mobilities over 40,000 cm²/(Vs) at a carrier density of $1 \times 10^{12}/\text{cm}^2$.

References

Figure

- [1] M. Schmitz, et al., 2D Materials, 7 (2020) 041007
- [2] O. J. Burton, et al., ACS Nano, 14 (2015) 13593

>100 Cu Orientations	Graphene Epitaxy
Cu Tile EBSD map	SEM Mapping (~7000 images) Graphene
Decoupling and Trans	iter
CVD Island growth	Before 203 After Oxidation Raman Mapping
	Optical Mapping
Interface Oxidation	SEM Mapping
Transfer to SiO,	Mapping

Figure 1: Schematic summary of holistic, high-throughput characterization methodology. The epitaxial growth of CVD graphene was studied on over 100 different crystallographic Cu orientations. The Cu-to-graphene interface oxidation and the quality of dry transferred CDV graphene onto Si/SiO₂ substrates was mapped by Raman spectroscopy, optical microscopy and electron microscopy for these Cu catalyst crystal orientations, ultimately making up a combined metric indicating the best compromise of parameters. The optimum Cu orientation is then reproducibly created using a scalable epitaxial growth platform, enabling high yield graphene island transfer.