Spin and Valley Relaxation in Single-Electron Graphene Quantum Dots

Christian Volk^{1,2}

L. Banszerus^{1,2}, K. Hecker^{1,2}, S. Möller^{1,2}, E. Icking^{1,2}, K. Watanabe³, T. Taniguchi⁴, and C. Stampfer^{1,2} ¹JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany ²Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany ³Research Center for Functional Materials, NIMS, 1-1 Namiki, Tsukuba 305-0044, Japan ⁴International Center for Materials Nanoarchitectonics, NIMS, 1-1 Namiki, Tsukuba305-0044, Japan <u>volk@physik.rwth-aachen.de</u>

The relaxation time of single-electron states in a quantum dot (QD) is an important parameter for solid-state spin and valley qubits, as it directly limits the lifetime of the encoded information. Thanks to the low spin-orbit interaction and low hyperfine coupling, graphene and bilayer graphene (BLG) have long been considered promising platforms for spin qubits. Only recently, it has become possible to control single-electrons in BLG QDs and to understand their spin-valley texture [1], while the relaxation dynamics have remained mostly unexplored [2]. Here, we present spin and valley relaxation times (T₁) of single-electron states in BLG QDs. Using pulsed-gate spectroscopy, we extract spin relaxation times T_{1s} exceeding 200 µs at a magnetic field of B = 1.9 T [3] and valley relaxation times T_{1v} of around 6 µs at B = 0.1 T. The strong dependence of T_{1s} on the spin splitting, promises even longer T_{1s} at smaller B, where our measurements are limited by the signal-to-noise ratio. The spin relaxation times are more than two orders of magnitude larger than those previously reported for carbon-based QDs, further suggesting that graphene is a promising host material for scalable spin qubits.

References

- [1] L. Banszerus, S. Möller, C. Steiner, E. Icking, S. Trellenkamp, F. Lentz, K. Watanabe, T. Taniguchi, C. Volk, and C. Stampfer, Nat. Commun.12, 5250 (2021).
- [2] L. Banszerus, K. Hecker, E. Icking, S. Trellenkamp, F. Lentz, D. Neumaier, K. Watanabe, T. Taniguchi, C. Volk, and C. Stampfer, Phys. Rev. B 103, L081404 (2021).
- [3] L. Banszerus, K. Hecker, S. Möller, E. Icking, K. Watanabe, T. Taniguchi, C. Volk, and C. Stampfer, arXiv:2110.13051 (2021).

Figures

Figure 1: (a) Scanning electron micrograph of the device. AC and DC voltages are applied to the finger gate (FG). (b) Band edge diagram along the p-type channel, illustrating the formation of a QD. (c) Measured energy splitting of the states. (d) Spin relaxation time T_1 as a function of the energy splitting.

Graphene2022