Enhancing Light–Matter Interactions in MoS₂ by Copper Intercalation

Chen Stern,

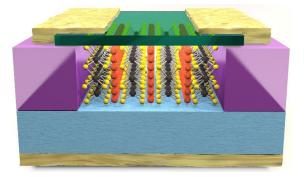
Avraham Twitto,^{1,2} Rifael Z. Snitkoff,^{1,2} Yafit Fleger,² Sabyasachi Saha,^{4,7} Loukya Boddapati,⁴ Akash Jain,⁵ Mengjing Wang, ³ Kristie J. Koski,³ Francis Leonard Deepak,⁴ Ashwin Ramasubramaniam,⁶ and Doron Naveh ^{1,2,*}.

¹Faculty of Engineering, Bar-Ilan University, Israel.

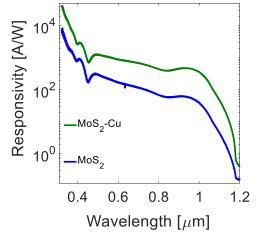
²Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Israel.

³Department of Chemistry, University of California Davis, USA.

⁴Nanostructured Materials Group, International Iberian Nanotechnology Laboratory, Portugal. ⁵Department of Chemical Engineering, University of Massachusetts, USA.


⁶Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, USA. ⁷Electron Microscopy Group, Defence etallurgical Research Laboratory (DMRL), yderabad, India. chen.stern@biu.ac.il

Abstract


The intercalation of layered compounds opens up a vast space of new host-guest hybrids, providing new routes for tuning the properties of materials. Here, we show that uniform and continuous layers of copper can be intercalated within the van der Waals gap of bulk MoS₂ resulting in a unique Cu-MoS₂ hybrid. The new Cu-MoS₂ hybrid, which remains semiconducting, possesses a unique plasmon resonance at an energy of ~1eV, giving rise to enhanced optoelectronic activity. Compared with high-performance MoS₂ photodetectors, copper-enhanced devices are superior in their spectral response, extends into the infrared and also in their total responsivity that exceeds 104 A/W. The Cu-MoS₂ hybrids hold promise for supplanting current night-vision technology with compact, advanced multicolor night vision.

References

Figures

Figure 1: Graphical illustration of the cross-section of a VA-MoS₂ (yellow and black atoms)–Si (light blue) heterostructure photodiode device intercalated by Cu (red atoms).

Figure 2: Responsivity versus wavelength of the bare-MoS₂ device (blue) and the Cu-intercalated MoS₂ device (green).

Graphene2022

^[1] Stern, C., et al., Enhancing Light–Matter Interactions in MoS₂ by Copper Intercalation. Advanced Materials, 2021. 33(23): p. 2008779.